动力学集体模型中的流体动力学热输运

Brianne Christopher 2019年 2月 28日

今天,我们邀请西班牙巴塞罗那自治大学(UAB)的客座博主 F. Xavier Alvarez 跟我们一起探讨如何使用一种新的理论架构和 COMSOL Multiphysics® 软件在纳米尺度上进行传热建模。

了解更多

Christopher Boucher 2018年 4月 20日

您曾经在旋转餐厅中随着缓慢地旋转享受美食吗?相似的概念可以帮助我们理解萨格纳克干涉仪和环形激光陀螺仪。

了解更多

Jiyoun Munn 2018年 4月 3日

由于高速通信是无线系统发展的必然趋势,因此,对更高的数据速率、更高的频率、更大的频谱和更宽的频宽的需求都增加了。当处理宽带时,可能需要在无线通信系统中部署多个设备,以滤除多余的噪声和干扰信号,提高信噪比,并提高灵敏度。而单个可调谐滤波器便可替代这些设备,从而减少系统的空间大小和重量,并降低多个组件的制造成本。

了解更多

Caty Fairclough 2018年 1月 29日

微镜有两个主要的优点:低功耗和低制造成本。因此,许多行业将微镜广泛用于 MEMS 应用。为了在设计微镜时节省时间和成本,工程师可以通过 COMSOL Multiphysics® 软件准确计算热阻尼和粘滞阻尼,并分析器件的性能。

了解更多

Bridget Cunningham 2017年 3月 28日

为了设计高 G 值加速度计的压电传感器封装,研究人员进行了多物理场分析,然后参照实验数据对仿真结果进行了验证。

了解更多

Bridget Cunningham 2016年 12月 26日

设计压阻式压力传感器等 MEMS 设备是一项极富挑战的工作,这是因为精确描述此类设备的工作条件需要基于多个物理场的耦合分析。借助 COMSOL Multiphysics®,您便可以轻松地耦合多物理场仿真,进而便捷地测试设备性能并获取精确的分析结果。今天,我们将通过一个示例来展示软件的这一强大功能。

了解更多

Bridget Cunningham 2016年 9月 7日

如今,许多新型设备都应用到了压电效应。在对此类设备的设计进行分析时,您一定希望获得准确可靠的结果。COMSOL Multiphysics® 仿真软件便能帮助您快速获取准确的结果。为了证明这一点,我们特意创建了一个压电换能器的标准模型。

了解更多

Bridget Cunningham 2016年 7月 21日

对于所有的治疗方式,人们总是希望可以在确保安全性和有效性的前提下,尽可能地减少治疗过程给患者带来的不适。对于糖尿病患者来说,注射胰岛素仍然是一种重要的治疗方式,然而注射过程却会伴随着疼痛。来自安大略理工大学(University of Ontario Institute of Technology)的研究团队,希望借助多物理场仿真开发出一种以 MEMS(微机电系统)为基础的微泵,这种微泵可以以一种安全无痛苦的方式来进行胰岛素的注射。

了解更多

Nandita Roche 2016年 5月 19日

充分提高学习效率,同时使学生保持学习热情,这是教授们希望在所有课程中实现的共同目标。 在以物理和工程学为基础的课程领域,仿真 App 通过简化方式向学生介绍复杂概念,从而帮助教授实现这一目标。以下,让我们来看看大学教授们在课堂中使用 App 的一些创新方式。

了解更多

Caty Fairclough 2015年 8月 17日

许多水下汽车都会采用高功耗的主动传感方法来探测和识别周围海洋环境中的物体。印度 PSG 技术学院的研究团队在盲眼洞穴鱼的启发下设计了一款压力传感器,并借助数值仿真分析了此设计,希望做出一个节能型的替代方案。在本篇博客中,我们将近距离分析该款被动型 MEMS 压力传感器。

了解更多


博客分类


博客标签

1 2