每页:
搜索

声学与振动 博客文章

多物理场仿真助力分析小提琴的音调与音量

2016年 3月 15日

从 10 世纪到 18 世纪,小提琴的音孔从圆形逐渐演变为细长的 f 形。在最近发布的一篇研究论文中,美国麻省理工学院的科学家和波士顿北本尼特街学校(North Bennet Street School)的小提琴制造商研究了这种形状变化对音质的影响。他们认为 f 形孔能够增强气流,将小提琴低音的响度增加两倍。今天,我们将使用 COMSOL Multiphysics 重现他们的研究结果。

借助仿真 App 高效研究室内的噪声分布

2016年 2月 11日

建筑师和工程师们会在开始建造房屋前对声音质量进行优化设计;此时,他们就可以使用 COMSOL Multiphysics 等仿真工具来实现该目标,最终将以较低的成本实现精确的结果。现在,仿真 App 进一步提升了该工作流程的效率;它使不具备仿真专业知识的用户也能自行运行声学分析,从而能更快地得到结果。本篇博客将介绍我们的家庭住宅声学分析器 App,希望它能帮您加深对室内声学的理解并为您带来更多灵感。

扬声器发明百年:使用与影响

2015年 12月 10日

扬声器能够利用电流进行扩音,自发明以来,给广大听众带来了极大的便利。扬声器也由于不断创新得到人们广泛认可,不断改进设备并积极开发它的新用途。今年是扬声器发明 100 周年纪念,我们将带您一起探索它的悠久历史,以及仿真在推动设计进步中的重要作用。

主动噪声控制中的声传播路径仿真

2015年 11月 6日

今天,Lars Fromme 将以比勒费尔德应用科学大学 (FH Bielefeld University of Applied Sciences)教授的身份回归我们的博客。 现代世界中,在机器的噪声下工作已经发展成为一个职业安全问题。为了保证工人的安全,我们可以借助仿真来开发一些低成本的噪声控制方案。比勒费尔德应用科学大学的研究人员决定借助 COMSOL Multiphysics 仿真软件来模拟声传播路径,希望藉此实现噪声控制。

通过声学扩散提升睡眠质量

2015年 6月 15日

声学扩散方程是最快速、最简单的高频声学模拟方法。事实上,当我为父母设计他们的新家时,这一方法对我的帮助很大。在本篇博客中,我将通过亲身体验来介绍声学扩散这一主题,重点讲解这一模拟方法背后的各项假设以及它的优缺点。

我们能听出鼓的形状吗?

2015年 4月 1日

半个世纪前,Mark Kac 做了一个有趣的讲座,讲座内容基于十年前他从 Bochner 教授那听到的一个问题:“我们能听出鼓声的形状吗?”他把讲座的重点放在特定的(待定)一组特征值能否确定振动鼓膜形状。特征值问题已经解决了,在这里,我们通过考虑一些有趣的物理效应,探索这个问题中“听”的部分。

仿真助力飞机发动机噪声分析

2014年 11月 17日

多年来,降低飞机发动机噪声一直是航空业的主要关注点。要将噪声辐射降到最低,当然需要先了解发动机噪声,考虑到飞机系统和几何的复杂性,这项任务就变得非常困难。通过航空发动机导流管模型,我们获得了对飞机发动机声场的更深入理解。

采用声悬浮技术精准制药

2014年 7月 16日

制造药品时需要无污染的空间,因此科学家尝试了许多创新的方法来改进相关工艺。在阿贡国家实验室(Argonne National Lab),曾希望能够创建一种可以在稀薄空气中漂浮和旋转化学化合物的设备并予以实现。这种设备可以非常精确地控制所需的每种化学药品的量,并将外部杂质破坏结果的风险降到最低。 声音如何举升物体 阿贡国家实验室(Argonne)的研究人员使用多物理场仿真和试错原型制作来提升声学悬浮装置的效率。当我们需要移动对象时,声音可能不是我们通常可以采用的工具。那么,如何利用声音在实验室环境中使物体漂浮或悬浮?答案在于以正确的方式组合力即可产生提升力。 当声音振动通过空气等介质传播时,所产生的压缩是可测且真实的。通过组合声泳力、重力和阻力等压力,不仅足以提升液体药物之类的材料,而且还可以根据操作员的需要对药物进行定位、旋转和移动。 声学悬浮器的换能器之间的波所产生的压力袋会在粒子尺度上产生较大的提升力。 结晶之前旋转药滴 通过使液滴保持稳定旋转,在药物保持液态和无定形状态下,研究人员能够使其进行化学反应。这是创造一个安全、稳定的环境使药物正确合成的关键所在。 声学悬浮装置的几何建模 声学悬浮装置中的每种材料和尺寸都会影响该设备,包括是否按照最终设计进行正常工作,以及是否能根据使用它的科学家的需求进行精细调整。 该设备的几何形状包括两个小型压电传感器,它们像喇叭一样竖立在产生药物的工作区域的上方和下方,如下图所示。 声学悬浮器的波型由位于平坦相对的换能器上的高斯形状泡沫控制。 设计中最重要的部分可能是由聚苯乙烯制成,并覆盖每个换能器端部的高斯形状的泡沫,这种泡沫可以消除所需范围之外的声波,能作为滤波器来维持均匀、明确的驻波。 Argonne的团队耦合使用了COMSOL Multiphysics® 中的“声学模块”、“ CFD模块”和“粒子追踪模块”对声学悬浮器进行了建模。通过仿真,他们能够缩小声场的形状和浮动液滴的位置。 上图仿真结果显示,在T = 0.75秒时,颗粒形成了液滴。左侧显示了仿真中预期的粒子分布,右侧显示了液滴的实际分布的照片。 使用声学悬浮装置生产更安全、更精确的药物 声悬浮技术的发展以及能控制越来越精细的化学反应的能力,使药物科学界的成员扩展了其研究领域,未来也许会发现更多能够挽救生命的新药。 扩展阅读 了解有关通过声悬浮技术实现飘浮更多信息。


浏览 COMSOL 博客