每页:
搜索

最新内容

预测咖啡在保温瓶中保温多长时间

2017年 10月 26日

你是否想过这样一个问题:如果将热咖啡倒入保温瓶中,它能保温多长的时间呢?对于这个问题,可以用两种不同的模拟方法进行研究,但想要得到的结果更精确,在计算上也更加昂贵。本文中,让我们一起来看看如何研究这个问题。 保温瓶材料特性研究 首先,我们先将 90°C 的咖啡倒入保温瓶中,然后考虑模型的材料属性。 涉及到的材料有: 咖啡用水的材料属性来表示 螺丝瓶盖和绝缘环均由尼龙材料制成 该保温瓶由两个不锈钢壁组成,中间有塑料泡沫填充物(真空保温瓶的内部空隙通常充满了抽过真空的空气,但其中也可能包含泡沫) 在 COMSOL Multiphysics® 软件中,除了泡沫填充剂之外的所有材料属性都可以直接从材料库中提取。同样地,你可以手动将特殊的材料属性添加到软件中。对于本例中的泡沫,可以输入以下值: 热导率:0.03 W/(m·K) 密度:60 kg/m3 热容: 200 J/(kg·K) 提示:此处所提到的建模方法都在保温瓶自然对流冷却教程模型中进行了介绍。请参考教程 MPH 文件和随附的文档,以确切了解如何设置和求解该模型。 快速方法:使用预定义的传热系数 对于一个快速且简单的模型,可以使用预定义的传热系数来描述热耗散。这种方法可以帮助我们确定咖啡在保温瓶中随着时间的流逝如何冷却。它不会告诉我们有关保温瓶周围的空气流动行为,不过它会告诉我们随着时间的流逝咖啡的冷却情况。 使用这种方法无需计算流体域中的传热和流速,只需模拟保温瓶外边界上的热通量。导热系数、表面温度和环境温度(25°C;略高于标准室温)的关系式有: q = h(T∞-T) 在许多预定义的情况下,h是已知的,且具有很高的精度。传热模块(COMSOL Multiphysics 的附加模块)包括一个传热系数库,可轻松访问。 使用此方法还有另一个好处就是节省时间,用这种方法无需预测该流体是湍流还是层流,因为许多关联关系在大多数流动状态下都可以获得。只要使用适当的 h 关联关系,使用此方法通常就可以以非常低的计算成本获得较准确的结果。   那第二种方法是什么呢?首先,有一个值得思考的问题:当咖啡冷却后,保温瓶表面的冷却能力如何分布。为此,需要在模型中包含周围的流体流动。 使用方法:计算对流速度场 为了更全面地了解我们珍贵的咖啡中到底发生了什么(说真的,什么时候可以喝它?),我们可以创建一个更详细的模型来描述保温瓶外部的对流气流。 采用第二种方法时,需要将 单相流 接口中的 重力 特征与传热模块或 CFD 模块结合使用,这可以在模型中包括浮力。通常,在遵循此模拟方法之前,您首先需要确定流体是层流还是湍流。我们先从简单的看起,让我们先跳过从 模型案例 中了解到的内容,这种情况下的流体是层流。 详细的模型显示,保温瓶驱动沿其壁面的垂直气流。气流最终在保温瓶上方的热柱中汇合,周围区域的空气被拉向保温瓶,进入垂直气流。(此流动足够弱,以至动压没有明显变化。)   保温瓶盖上形成的涡流会减少该区域的冷却,这是第一种方法无法分辨的。从本质上讲,与具有近似传热系数的简单方法相比,流体模型更适合描述局部冷却能力。 比较(结合)两种方法 咖啡在保温瓶中能保温多长时间呢?许多咖啡爱好者喜欢将温度保持在 50–60°C(大约120–140°F)的温度范围内,因为据说这是“ 咖啡香气发散 ”的时候。这两种方法都表明,在保温瓶中放置 10 个小时后,咖啡的温度将达到约 54°C 左右,这仍是一个保留咖啡香气的范围。当然,如果我们将保温瓶放在比设想的 25°C 低的温度下,则咖啡的冷却速度会更快。 在两种模拟方法下的咖啡温度随时间变化的曲线图。蓝线表示第一种方法,绿线表示第二种方法。 尽管就咖啡温度随时间的变化而言,两种模拟方法都得出了非常相似的结果。然而,当探究保温瓶表面的冷却能力时,情况就不同了: 两种建模方法的传热系数图。蓝线表示第一种方法,绿线表示第二种方法。 为了在长期内获得快速且准确的结果,你可以将这两种方法结合起来。在建立了更详细的模型后,可以通过更简单的方法来求解大规模且与时间有关的模型,从而创建并校准传热系数的函数,以供以后使用。 下一步:自己尝试一下 我们看到用两种不同的方法来模拟保温瓶中的咖啡随时间的对流冷却过程。更详细的方法在计算方面要求更高,因为它结合了传热和流体流动,但它也更准确,因为考虑了局部影响。通过结合使用这两种方法,你可以节省很多时间。 获取教程模型 通过从在线案例库或 COMSOL Multiphysics 软件内部的案例库中下载教程模型来自己尝试一下。如果您对此模型或 COMSOL Multiphysics 软件有任何疑问,请与我们联系。

通过时域反射法分析优化电气设计

2017年 10月 23日

通常,工程师使用信号完整性(SI)分析获得有关电信号质量的信息,然后,根据此信息改进设计。在 SI 应用中,时域反射法(TDR)是一种有用的技术,它可以发现信号路径中的不连续性。本文我们将使用仿真对两种不同的设计进行 TDR 分析:一条高速互连线和一组平行的微带线。

使用最小二乘目标进行多参数优化

2017年 10月 19日

了解如何使用多参数优化来估计参数,这将根据实验参数的基础数据文件自动调整您的模型。

模仿螳螂虾设计超灵敏成像系统

2017年 10月 18日

螳螂虾拥有一套动物王国中最发达的视觉系统。研究人员以螳螂虾为灵感设计了一套医学成像系统,期望以此打造新型的癌症检测工具。

恒星合并(与碰撞)的痕迹:引力波的历史性新发现

2017年 10月 17日

假设你只能阅读没有插图的书,突然有一天去看 3D 电影。2017 年引力波的新发现让天文学家看见了一个更加清晰明亮的宇宙。

配重式投石机的物理原理是什么?

2017年 10月 11日

投石机是一种大型攻城武器,在中世纪或奇幻电影中经常可以看到它的身影。它实际上涉及了有趣的多体动力学问题。

模拟多孔介质和活性颗粒床中的表面反应

2017年 10月 10日

在之前的博客文章中,我们讨论了表面在化学反应器中的特殊性。在本篇博客文章中,我们将讨论如何将反应器结构(如颗粒床)的表面积最大化,以及在固定床反应器具有局部几何复杂性且微观扩散很重要的前提下,我们如何简单而准确地进行模拟。

用 COMSOL Multiphysics® 分析开尔文探针设计

2017年 10月 4日

开尔文探针提供了一种无损、无触点的方法来测量各种材料组合的功函数差。这些探针可具有多种设计,包括不同的尖端形状、长度和半径。为了确定最佳设计,同时最大限度地减少测试,研究人员使用 COMSOL Multiphysics® 软件做了相关研究……


浏览 COMSOL 博客