The non-linear PDE is :

$$
\left(1-\varphi+\frac{\varphi}{(1+u)^{\wedge} 2}\right)\left(\frac{\partial u}{\partial \tau}+\frac{\varepsilon}{1-\tau} \frac{\partial u}{\partial \varepsilon}\right)-\left(\frac{1}{(1-\tau)^{2}} \frac{\partial}{\partial \varepsilon}\left((1-\varphi) \frac{\partial u}{\partial \varepsilon}\right)\right)+\frac{(\gamma-u)}{(1-\tau)} \delta(\varepsilon-\varepsilon p)=0
$$

Where,
$\varphi=k 1+k 2 * H(\varepsilon-\varepsilon p) ;$
"H($\varepsilon-\varepsilon p)$ " is the Heaviside step function.
$\varepsilon p=\frac{(1-k 3 * \tau)}{(1-\tau)} ; \quad \quad " \varepsilon$ "is dimensionless length: $" \tau$ " is dimensionless time;
$\gamma=\frac{k 4 * u}{k 5+u} ;$
$k 1, k 2, k 3, k 4, k 5$ are constants.
$\delta(\varepsilon-\varepsilon p)$ is the Dirac delta function.
" u "is the dimensionless dependent variable.

Boundary Conditions:
$\varepsilon=0 \quad \frac{\partial u}{\partial \varepsilon}=0$
$\varepsilon=1$
$(1-\varphi) \frac{\partial u}{\partial \varepsilon}=((1-\varphi) u+\gamma \varphi)(1-\tau)$
$\tau=0$
$u=1$

