Introductory tutorial to the RF Module: Periodic Problems \& Diffraction Gratings

v■ CaMsロL

First exercise: Plane wave coming in at an angle

Consider two polarizations of incident light:

TE, Electric field is perpendicular to the plane

TM, Magnetic field is perpendicular to the plane

$$
\begin{gathered}
P=\underset{\text { boundary }}{\int \frac{1}{2} \mathbf{n} \cdot \operatorname{Re}\left(\mathbf{E} \times \mathbf{H}^{*}\right) \partial \Gamma} \\
R=\frac{P_{\text {reflected }}}{P_{\text {incident }}} \\
T=\frac{P_{\text {transmittel }}}{P_{\text {incident }}} \\
R+T=1
\end{gathered}
$$

Copyright © 2009 COMSOL. Redistribution is not allowed without permission from COMSOL.

Sketch the domains

Use the 2D Hybrid Modes formulation

Sketch five stacked rectangles, each 2×1 microns

Join the top two into a single composite object

Join the bottom three into a single composite object

Go to:
Draw... Use Assembly...

Set up a parametric study on incident angle

Set up global expressions for the k-vector and components as a function of incident angle

Use Floquet boundary condition on the sides

Leave all interior boundaries at the default, continuity
Set all other boundaries to PMC

There is also a "Boundary Pair" at the boundaries between the two objects

Use an analytic expression for a plane wave

Copyright © 2009 COMSOL. Redistribution is not allowed without permission from COMSOL.

The pair condition applies the incident field to only one side of the pair

Any reflected wave will pass back through the pair boundary unimpeded

An incident field can be applied at the source boundary, and will only propagate in one direction into the domain, where it may reflect back

The destination boundary is colored purple by default

The source boundary is colored cyan by default

When using Assembly mode, the mesh may be non-congruent, try to avoid this

Assembly meshing allows elements to be non-congruent.

Assembly meshes add extra equations "behind the scenes" that balance the flux between the adjacent elements.

In 2D, you must have at least eight elements per wavelength in the media

In 3D, use five elements per $\lambda_{\text {local }}$

Using PML's absorbing in the y-direction to absorb the wave

The use of PML's means that the top and bottom BC's don't matter

We don't (generally) know the propagation constant of the reflected or transmitted wave, but with the PML, it doesn't matter

Integrate the reflected power across this boundary

Set up global expressions to compute the reflection and transmission coefficients

Integrate the transmitted power across this boundary, you may need to switch the sign to account for the non-unique normal vector

When solving periodic problems, make sure to change the solver settings as shown:

Solve for incident angles from 0-90 and for both TE and TM excitations, which you have to switch on the Port tab

Results...

At grazing incidence, accuracy is degraded

If desired, this can be reduced by filling the PML with more elements

Copyright © 2009 COMSOL. Redistribution is not allowed without permission from COMSOL.

Modeling in 3D...

Build two models, one TE, on TM

The TM case is when the H -field is parallel to the boundary at which the excitation is applied, the red face.

In the TM case, all the blue boundaries must be PMC, which represents symmetry.

The TE case is the opposite, when the E-field is parallel to the excitation boundary, in this case, the blue faces must all be PEC.

Port mode conditions for the TM case

Port mode conditions for the TE case

Copyright © 2009 COMSOL. Redistribution is not allowed without permission from COMSOL.

Meshing strategies...

Use five elements per $\lambda_{\text {local }}$

Copyright © 2009 COMSOL. Redistribution is not allowed without permission from COMSOL

When using brick elements，recall that error is governed by distance between the nodes

Triangular meshes require less memory and time，since there is less connectivity

In 3D，tetrahedral elements have better convergence properties using the iterative solvers，but this does not matter much for direct solvers．

Results...

s-polarized (TE)

Arrows: E-field Colors: H -field

p-polarized (TM)

Diffraction gratings and periodic structures

Same solver settings...
Same material properties...
Same PML's...
Same periodic boundary conditions...
Same excitation...

Must use interactive meshing to get a good mesh on the part:

Copy the mesh for periodic faces Copy the mesh for identity pair faces Use about five elements per wavelength Use five elements through the PML Use swept meshing as much as possible Use Convert to Tet Mesh

Copyright © 2009 COMSOL. Redistribution is not allowed without permission from COMSOL.

