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Future Work on the 3D models

Extension of these notes
• animations

• visualization using COVISE
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Chapter 1

Lumped Parameter Models of RL Circuits

Prior to detailing finite element models in subsequent chapters, we develop in this chapter simplified lumped parameter
approximation that serve to get an intuitive feeling and point of comparison for the subsequent models. The point of
departure for deriving lumped parameter models is the following first order ordinary differential equation relating the
externally applied voltage excitation Ve(t) with the current I(t) in a circuit with an Ohmic resistanceR and inductance
L.

Figure 1.1: Series connection of a resistance and inductance.

VR(t) + VL(t) = Vin(t) ⇔
d

dt
(LI) +RI = Ve(t) . (1.1)

The terms in the left-hand side can be identified as the induced and resistive voltage, respectively, and the equation
states that at all times the sum of the induced and resistive voltage is equal to the externally applied one. The equation
needs to be supplied with an initial value for the current.

The Ohmic resistance R determined by the electrical conductivity of the medium. In the case that the coil is
solenoid wounded Nt times around a ferromagnetic core with magnetic permeability µ, the impedance L can be
expressed as

L = µN2
t

S

lpath
= µ0 µrN

2
t

S

lpath
, (1.2)

where S and lpath cross-section and length of the flux path in the ferromagnetic core respectively.
In this chapter we first derive an analytical expression for the current in an RL-circuit with constant impedance

and two excitations: a constant and sinusoidally varying voltage source. These models illustrate how the presence of
an impedance causes a phase shift in and amplitude reduction of the current. In more realistic models however the
magnetic permeability µ of the core changes by moving the operation point on a non-linear B-H characteristic. In a
second stage we therefore extend the model to include changes in the impedance induced by changes in the magnetic
permeability. This model assumes the coil to be a solenoid for which expression (1.2) is correct. The generalisation of
this model to more complex coil-core configurations is therefore not immediate.

Describe a mechanical equivalent: variable impedance and variable mass.

Goals In this chapter we aim at

• describing a simple model able to explain the inductive current limiting principle (including the concepts of
induced voltage and phase difference between applied voltage and current). This simple model can possibly
serve as coarse model inside an surrogate based optimisation algorithm.
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• explaining why this simple model is not sufficient for the type of devices considered

To do:

1. describe drop in resistive voltage

2. describe presence of DC coil by additive constant in the flux

1.1 Ohmic Resistance of a Wire
Consider a cylindrical electrical conductor along the z-axis with length `z and cross-section Ω in the xy plane. The
shape of the cross-section Ω is assumed to be z-independent. Consider furthermore a stationary electrical current
flowing along the z-axis through the conductor. For stationary fields Faraday’s law implies that the electric field E is
curl free. This condition can be ensured by writing E in terms of the electric potential φ as

E = −∇φ . (1.3)

Substituting this into Ohm’s law E = σ J yields

J = −σ∇φ . (1.4)

For currents flowing in the z-direction only, the above relation yields

Jz = −σ ∂φ
∂z

. (1.5)

Assuming the gradient ∂φ/∂z to be constant over the cross-section Ω, we obtain Ohm’s law by integrating (1.5) over
Ω in integral form

4V = RI , (1.6)

where
4V = −`z

∂φ

∂z
(1.7)

and
I =

∫
Ω

Jz dΩ (1.8)

are the voltage drop over and the current through the conductor and where

R = `z/

(∫
Ω

σ dΩ
)

(1.9)

is the ohmic resistance of the conductor expressed in Ohm Ω. Equation (1.6) can be rewritten as

I = G 4V , (1.10)

where
G =

1
R
, (1.11)

is the conductance of the conductor.

1.2 Inductance of a Winded Coils

1.2.1 Definition
• give definition of (self and mutual) inductance

• give units (Henry) and function of primary units

1H = 1Wb/A = 1T m2/A = 1
V s
m2

m2/A = 1
V
A

s = 1Ω s (1.12)

• give range of value for applications (tens of miliHenry)
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1.2.2 Magnetic Flux
Considering the coil to be an interconnection of Nt flux contributions, the magnetic flux and the coil impedance are
related by

ψ(t) = Nt φ(t) = L(t) I(t) ⇔ L(t) =
Nt ψ(t)
I(t)

=
φ(t)
I(t)

. (1.13)

Assuming that I(t) 6= 0, this expression allow to compute the impedance via the magnetic flux.

1.2.3 Magnetic Energy
Consider that the volume Ω encloses the core and ferromagnetic core and has a permeability µ = µ(x, t). The
magnetic energy Wm in Ω due to the magnetic flux B and field H induced due a time-varying current is given by the
volume integral

Wm(t) =
1
2

∫
Ω

B ·H dΩ =
1
2

∫
Ω

µB ·B dΩ . (1.14)

In a 2D perpendicular current formulation on a computational domain with cross-section Ωxy in the xy-plane and
length `z in the z-direction (examples will be given in subsequent chapters), this formula simplifies to the surface
integral

Wm(t) =
`z
2

∫
Ωxy

[
BxHx +ByHy

]
dΩ =

`z
2

∫
Ωxy

µ
[
BxBx +ByBy

]
dΩ . (1.15)

In case that the magnetic field is generated by a total current Itot(t) flowing through a coil with Nt windings and
current I(t) per turn, i.e., Itot(t) = Nt I(t), the magnetic energy and the coil impedance L(t) are related by

Wm(t) =
1
2
L(t)I2(t) ⇔ L(t) = 2

Wm(t)
I2(t)

. (1.16)

Not that the inductance scales

• quadratically with Nt;

• linearly with µ.

In case that µ is constant (no magnetic saturation), the impedance is current independent and can therefore be computed
using any non-zero value for the current. In case that a sinusoidal current brings (a part of) the core alternatively in
and out of saturation, the impedance can be computed for a particular working condition. In configurations in which
different coils are present (AC and DC coil in the fault current limiter), the self-inductance of the coil can be computed
by considering the current in the single coil only (setting the current in the other coils equal to zero).

1.3 Impedance
The Ohmic resistance of the wire and the inductance of a coil can be combined to form the total impedance denoted
by X and defined by

X =
√
R2 + ω2L2 . (1.17)

1.4 Constant Inductance Model
In this section we assume that dLdt = 0. In this case, equation (1.1) reduces to

L
dI

dt
+RI = V (t) . (1.18)

Given some initial condition, this ordinary differential equation can be solved numerically using a time-integrator
taking a time-dependent resistance (simulation of fault) into account. In order to derive analytical expressions however,
we assume from here on that dRdt = 0. The ratio R

L has the dimensions of an (angular) pulsation and will be denoted
by ω1 from here on. The solution of the homogeneous equation to (1.18) is

Ih(t) = C exp(−R/L t) = C exp(−ω1t) (1.19)

where C is chosen so to satisfy the initial conditions.
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1.4.1 Constant Applied Voltage
In case that the applied voltage is constant and equal to V0, the method of variation of constants yields that I(t) =
C(t) Ih(t), where

C ′(t) = V0/L exp(ω1t) ⇒ C(t) = V0/Lω1 exp(ω1t) + C0 = V0/R exp(ω1t) + C0 . (1.20)

For the current we then have

I(t) =
[
V0/R exp(ω1t) + C0

]
exp(−ω1t) (1.21)

= V0/R+ C0 exp(−ω1t) , (1.22)

where the integration constant C0 is related to the initial condition I(t = 0) = I0 by

C0 = I0 − V0/R . (1.23)

The current is then given by

I(t) =
V0

R
+
[
I0 − V0/R

]
exp(−ω1t) . (1.24)

If the relaxation time τ = L/R is sufficiently small (i.e., if the resistance R is not too small and the inductance L is
not too large), then after a few multiples of the relaxation time, the current is independent of the initial condition and
equal to its stationary value

I(t) =
V0

R
. (1.25)

1.4.2 Sinusoidally Varrying Applied Voltage
In case that the applied is sinusoidally varying, i.e., V (t) = V0 sin(ω0t), the method of variation of constants yields
that I(t) = C(t) Ih(t), where

C ′(t) = V0/L sin(ω0t) exp(ω1t) ⇒ C(t) = (V0/L)
∫ t

sin(ω0s) exp(ω1s) ds+ C0 . (1.26)

for some integration constant C0. Applying integration by parts twice yields

L/V0 C(t) =
[
1/ω1 sin(ω0s) exp(ω1s)

]t − ω0/ω1

∫ t

cos(ω0t) exp(ω1s) ds+ C0 (1.27)

= 1/ω1 sin(ω0t) exp(ω1t)− ω0/ω
2
1

[
cos(ω0s) exp(ω1s)

]t
(1.28)

−ω2
0/ω

2
1

∫ t

sin(ω0s) exp(ω1s) ds+ C0 (1.29)

= 1/ω1 sin(ω0t) exp(ω1t)− ω0/ω
2
1 cos(ω0t) exp(ω1t) (1.30)

−ω2
0/ω

2
1

∫ t

sin(ω0s) exp(ω1s) ds+ C0 (1.31)

Hence

[1 + ω2
0/ω

2
1 ]C(t) = 1/ω1(V0/L) sin(ω0t) exp(ω1t)− ω0/ω

2
1(V0/L) cos(ω0t) exp(ω1t) + C0 (1.32)

or

C(t) = (V0/L)
[ ω1

ω2
0 + ω2

1

sin(ω0t)−
ω0

ω2
0 + ω2

1

cos(ω0t)
]
exp(ω1t) + C0 (1.33)

=
V0

L(ω2
0 + ω2

1)
[
ω1 sin(ω0t)− ω0 cos(ω0t)

]
exp(ω1t) + C0 (1.34)

=
V0

√
ω2

0 + ω2
1

L(ω2
0 + ω2

1)
[ ω1√

ω2
0 + ω2

1

sin(ω0t)−
ω0√

ω2
0 + ω2

1

cos(ω0t)
]
exp(ω1t) + C0 (1.35)

=
V0

L
√
ω2

0 + ω2
1

[
sin(ω0t) cos Θ− cos(ω0t) sinΘ

]
exp(ω1t) + C0 (1.36)

=
V0

X
sin(ω0t−Θ) exp(ω1t) + C0 (1.37)
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where we’ve introduced the phase shift

sinΘ
cos Θ

=
ω0

ω1
⇔ Θ = arctan(

ω0

ω1
) = arctan(

2π f R
L

) , (1.38)

and where the integration constant C0 is related to the initial condition by

C0 = I0 −
V0

X
sin(Θ) . (1.39)

The current is then given by

I(t) =
V0

X
sin(ω0t−Θ) +

[
I0 −

V0

X
sinΘ

]
exp(−ω1t) . (1.40)

If the relaxation time τ = 1/ω1 = L/R is suffuciently large, then after a few multiples of the relaxation time, the
current is independent of the initial condition and equal to

I(t) =
V0

X
sin(ω0t−Θ) . (1.41)

Compared with a purely resistive network, the current has both a lower amplitude and a phase shift. A large inductance
in particular will lead to a lower current value and a larger phase shift. This is illustrated in Figure 1.4.2.

Figure 1.2: Current in RL-circuit for different values of the inductance.

1.5 Flux-Variable Inductance Model
The models developed in the previous section cease to be valid in situations in which the working point changes in
time over a range in which the permeability and therefore the impedance can no longer assumed to be constant. The
case that we will be interested in is the one in which the permeability varries along a non-linear B-H characteristic
and which time-varrying voltage source bringing the ferromagnetic core in (low permeability and impedance) and out
(high permeability and impedance) of saturation.

To extend our models to variable impedance cases, it turns out to be convenient to replace the current by the flux
as state variable

ψ = LI ⇔ I =
ψ

L(ψ)
(1.42)

and to rewrite the equation (1.1) modelling an RL-circuit as

d

dt
ψ +

R

L(ψ)
ψ = V (t) . (1.43)

In this model the variable impedance can be computed using the non-linear characteristic data assuming the model
(1.2) for a solenoid. In this case we have that

L(ψ) = µ
[
B(ψ)

]
N2
t

S

lpath
(1.44)

= µ
[ψ
S

]
N2
t

S

lpath
. (1.45)
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Given an inital condition ψ(t = 0) = L(t = 0)I(t = 0), the ODE (1.43) can be solved numerical for the flux ψ and
thus also for current I using (1.42).

This model extends the models of the previous section to a variable impedance and thus allow to illustrate the
inductive fault current limiting effect. This model still has limited applicability as it uses the expression for the
solenoid.

(a) B-H-curve (b) µr-B curve

Figure 1.3: Rational Function Approximation of the B-H curve.

1.6 Numerical Example
In this section we employ the model developed in the previous section to illustrate how a coil with a flux-variable
impedance can work as a fault current limiter.

1 f u n c t i o n [ T , p s i ] = s o l v e r l c i r c u i t ( my ctx )
2
3 %. . Compute i n i t i a l c o n d i t i o n t a k i n g phase s h i f t i n t o a c c o u n t . .
4 Rpre = 5 ; Rpos t = . 1 ; R i n i t = Rpre+ Rpos t ; T f a u l t = 1 ; Vmax = 2 8 ;
5 L i n i t = lookup imped ( 0 , my ctx ) ;
6 om = 2∗ pi ∗50 ;
7 X i n i t = s q r t ( R i n i t ˆ2 + omˆ2∗ L i n i t ˆ 2 ) ;
8 p h a s e s h i f t = atan (om∗ R i n i t / L i n i t ) ;
9 I i n i t = − Vmax / X i n i t ∗ s i n ( p h a s e s h i f t ) ;

10 p s i i n i t = L i n i t ∗ I i n i t ;
11
12 %. . Add DC component . .
13 V dc = − .4 ;
14 p s i d c = L i n i t ∗V dc / R i n i t ;
15
16 %. . S o l v e ODE f o r t h e m a g n e t i c f l u x . .
17 Tend = 0 . 3 2 ;
18 o p t i o n s = o d e s e t ( ’ Re lTo l ’ ,1 e−12 , ’ AbsTol ’ ,1 e−12);
19 % o p t i o n s = [ ] ;
20 [ T , p s i ] = ode45 ( @ r l c i r c u i t , [ 0 Tend ] , p s i i n i t + p s i d c , o p t i o n s ) ;
21
22 f u n c t i o n d p s i d t = r l c i r c u i t ( t , p s i )
23
24 i f ( t<T f a u l t ) R l i n e = Rpre+ Rpos t ; e l s e R l i n e = Rpos t ; end
25 V l i n e = V dc + Vmax∗ s i n (2∗ pi ∗50∗ t ) ;
26 Limpd = lookup imped ( p s i , my ctx ) ;
27 d p s i d t = V l i n e − R l i n e / Limpd∗ p s i ;
28
29 end
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30
31 end

1 f u n c t i o n Limpd = lookup imped ( p s i , my ctx ) ;
2
3 g l o b a l Limpd
4
5 b t o p s i = my ctx . b t o p s i ;
6 murtoL = my ctx . murtoL ;
7 p s i d c = my ctx . p s i d c ;
8
9 %. . Find b . .

10 b = p s i / b t o p s i ;
11
12 %. . Find r e l a t i v e p e r m e a b i l i t y . .
13 mur = bhcurve ( b ) ;
14
15 %. . Find i n d u c t a n c e . .
16 Limpd = murtoL∗mur ;
17
18 %. . O v e r w r i t e w i t h an a−p r i o r i v a l u e
19 i f ( 0 )
20 Limpd = 1e−1;
21 end

1 f u n c t i o n mur = bhcurve ( b )
2
3 %. . BH c u r v e d e f i n i t i o n . .
4 bha = 2 . 1 2 e−4;
5 bhb = 7 . 3 5 8 ;
6 bhc = 1 . 1 8 e6 ;
7
8 %. . D e f i n e mur−b2 c u r v e
9 b2 = b . ∗ b ;

10 nur = bha + (1−bha )∗ b2 . ˆ bhb . / ( b2 . ˆ bhb+bhc ) ;
11 mur = 1 . / nur ;
12
13 %. . I f d e s i r e d , o v e r w r i t e w i t h l i n e a r m a t e r i a l . .
14 i f ( 0 )
15 mur = ones ( s i z e ( b ) ) ;
16 end
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Chapter 2

Quasi Stationary Magnetic Fields Models

• Maxwell equations including conservation of charge and the fact that∇·J = 0 implies that the electrical charge
density is time-independent

• magnetic constitutive relations including saturation, hysteresis and permanent magnets

• time-harmonic formulation: single and multiple frequencies

• boundary conditionings expressing symmetry (see e.g. team25)

• perpendicular current application mode including the expressions for the magnetic field and magnetic field
density

• azimuthal current application model including derivation of the PDE using the curl in cylindrical coordinates,
the boundary condtion expressing axial symmetry and things as above

• induced voltage - stranded conductor model - winding function: be careful on documenting the scaling with the
coil cross-section

• induced current - eddy current losses

• magnetic force computation

• illustrations: voice-coil, team25, model of Firman and FCL

Remark Defining the induced voltage with bad sign may result in non-convergence of the transient simulation. In
order to check the sign of the induced voltage, one can proceed as follows: run in a first stage a transient computation
without the induced voltage in the ODE and check that the two ways of computing the induced voltage to match. Run
in a second stage a transient computation with the induced voltage incorporated in the ODE.

2.1 Maxwell Equations
To add

• constitutive relations with permanent magnets

• conservation of charge ∂ρ(x,t)
∂t +∇ · J(x, t) = 0

The starting point for deriving partial differential equation models for magnetic field computations are the Maxwell
equations [?, ?]. These equations relate five vector fields: the magnetic field H, the magnetic flux density (or induction)
B, the electric field E, the electric displacement D and the electric current density J. They can be written as

∇×H− σ v ×B = J +
∂D
∂t

, (2.1)

∇×E = −∂B
∂t

, (2.2)

∇ ·B = 0 , (2.3)
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∇ ·D = ρ , (2.4)

where ρ is the electric charge density and where v is the velocity of the medium with electrical conductivity σ.
Equations (2.1) and (2.2) are Ampère’s law and Faraday’s law respectively. Equations (2.3) and (2.4) are conservation
laws. The Maxwell equations have to be completed with constitutive material equations

B = µH , (2.5)

D = εE , (2.6)

J = σE , (2.7)

where µ, ε and σ are the magnetic permeability and the electric permittivity and conductivity respectively. Equations
(2.5) and (2.6) are the magnetic and dielectric relations, and equation (2.7) is Ohm’s law. In the general case, the
quantities µ, ε and σ are tensors. Maxwell’s equations can be derived from a minimising the electromagnetic energy

Wtot(t) = We(t) +Wm(t) (2.8)

=
1
2

∫
Ω

D ·E dΩ +
1
2

∫
Ω

B ·H dΩ . (2.9)

In the following sections the full set of Maxwell equations are reduced to simpler models by making assumptions
on the time-behavior of the field and the dimensions of the problem.

2.2 Magnetostatic Scalar and Vector Potential Formulation
In a stationary regime, the magnetic field quantities are decoupled from the electric ones and governed by

∇×H− σ v ×B = J , (2.10)

∇ ·B = 0 , (2.11)

B = µH . (2.12)

By introducing either a scalar or magnetic vector potential, these equations transform into second order partial differ-
ential equations. In the case that v = 0, Equation (2.13) states that electrical charges moving uniformly in time give
rise to a static magnetic field. If in addition J = 0, then the curl-free condition for the magnetic field H (2.13) is
ensured by expressing H in terms of the scalar magnetic potential Vm as

H = ∇Vm . (2.13)

The substitution of (2.13) and (2.12) into (2.11) yields

∇ · (µ∇Vm) = 0 . (2.14)

The divergence-free condition for the for the magnetic flux density B (2.11) is ensured by expressing B in terms of
the magnetic vector potential A as

B = ∇×A . (2.15)

or

B = (Bx(x, y, z), By(x, y, z), Bz(x, y, z)) (2.16)

=
(
∂Az
∂y

− ∂Ay
∂z

,−∂Az
∂x

+
∂Ax
∂z

,
∂Ay
∂x

− ∂Ax
∂y

)
. (2.17)

The substitution of (2.15) and (2.12) into (2.13) yields

∇× (ν∇×A)− σ v × (∇×A) = J , (2.18)

where ν = 1/µ is the magnetic reluctivity. Equation (2.18) is a coupled system of three second order PDEs for the
three components of A. Once this system has been solved for A, the technically relevant fields B and H can be
calculated by relations (2.15) and (2.12).

To avoid the complexity of solving (2.18), two-dimensional approximations are often considered in engineering
practice. We will consider two such approximations: a two dimensional Cartesian formulation and an axi-symmetrical
formulation in cylindrical coordinates. In many applications, these formulations already give valuable information of
the device under consideration.
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2.2.1 Perpendicular Current Formulation
In two-dimensional Cartesian formulations, the problem is posed on a domain Ω lying in the xy-plane and all field
quantities are assumed to be z-independent. Here Ω models for example the cross-section perpendicular to the axis of
an electrical machine. The current density J is assumed to be perpendicular to Ω

J = (0, 0, Jz(x, y)) . (2.19)

Due to symmetry, the field quantity B lies in the plane Ω

B = (Bx(x, y), By(x, y), 0) . (2.20)

Condition (2.15) can therefore be met assuming a potential A of the form

A = (0, 0, Az(x, y)) . (2.21)

and by (2.11) the components of B in can be expressed as

Bx =
∂Az
∂y

and By = −∂Az
∂x

. (2.22)

By this assumption, the system (2.18) reduces to a single second order PDE for the z-component of the magnetic
vector potential

− ∂

∂x

(
ν
∂Az
∂x

)
− ∂

∂y

(
ν
∂Az
∂y

)
+ σ vx

∂Az
∂x

+ σ vy
∂Az
∂y

= Jz . (2.23)

2.2.2 Azimuthal Current Formulation
In an axi-symmetrical formulation in cylinder coordinates (r, θ, z), the domain Ω lies in the rz-plane and all field
quantities are assumed to be θ-independent. In analogy to the Cartesian formulation, the applied current density is
assumed to be perpendicular to Ω

J = (0, Jθ(r, z), 0) . (2.24)

As before the field quantity B only has components in the modeling plane

B = (Br(r, z), 0, Bz(r, z)) . (2.25)

Condition (2.15) can therefore be met assuming a potential A of the form

A = (0, Aθ(r, z), 0) . (2.26)

and by (2.11) in cylindrical coordinates

∇× F =
(

1
r

∂Fz
∂θ

− ∂Fθ
∂z

,
∂Fr
∂z

− ∂Fz
∂r

,
1
r

[
∂(rFθ)
∂r

− ∂Fr
∂θ

])
(2.27)

the components of B in can be expressed as

Br = −r ∂
∂z

(Aφ(r, z)
r

)
(2.28)

= −∂Aφ(r, z)
∂z

(2.29)

and

Bz = r
∂

∂r

(Aφ(r, z)
r

)
+ 2

Aφ(r, z)
r

(2.30)

= r
1
r

∂Aφ(r, z)
∂r

− rAφ(r, z)
1
r2

+ 2
∂Aφ(r, z)

r
(2.31)

=
∂Aφ(r, z)

∂r
+
∂Aφ(r, z)

r
(2.32)

=
1
r

[ ∂
∂r

(rAφ(r, z))
]

(2.33)

=
1
r

[
Aφ(r, z)) + r

∂

∂r
Aφ(r, z)

]
(2.34)

=
Aφ(r, z)

r
+
∂Aφ(r, z)

∂r
(2.35)
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The system (2.18) then reduces to the scalar equation

− ∂

∂r

(
ν

r

∂(r Aθ)
∂r

)
− ∂

∂z

(
ν
∂Aθ
∂z

)
+ σ vr

∂Aθ
∂r

+ σ vz
∂Aθ
∂z

= Jθ . (2.36)

The PDE in form (2.23) or (2.36) is the governing PDE for two-dimensional stationary magnetic field computa-
tions.

2.3 Transient Formulation
In order to derive the time-dependent magnetic field formulation, we eliminate the current density J and the displace-
ment current D in the right-hand side of Ampère’s law (2.1) using Ohm’s law (2.7) and the dielectric relation (2.6)
respectively. These manipulations yield

∇×H = σE + ε
∂E
∂t

. (2.37)

We assume the electro-magnetic excitations, and thus also the induced electro-magnetic fields, to vary periodically
in time with period T and with frequency f = 1/T . We introduce the dimensionless variable t′ = t/T = f t. By
rewriting the time derivative in the right-hand of (2.37) in this dimensionless variable, we obtain

∇×H = σE + ε f
∂E
∂t′

. (2.38)

We assume the time-variations to be quasi-stationary. This assumption is justified by the fact that in technically
relevant simulations of electro-magnetic energy transducers a sufficiently large upper bound on the frequency is

f ≤ 104 Hz . (2.39)

For the electrically conducting media that we will consider, the electric conductivity σ and permeability ε lie in the
ranges

σ ∈ [0, 109]C2N−1m−2 s−1 and ε ∈ [ε0, 10 ε0] , (2.40)

where ε0 = 8.85 . 10−12C2N−1m−2 is the permittivity of vacuum. The above bounds on f , σ and ε allow us to
neglect the contribution of the displacement current, i.e. the second term in the right-hand side of (2.38). Hence, we
obtain

∇×H = σE . (2.41)

In the presence of time-varying fields, the definition (2.15) for the vector potential A remains valid. Introducing A in
the left-hand side of (2.41) yields

∇× (ν∇×A) = σE . (2.42)

By Ohm’s law (2.7), this equation can be written as

∇× (ν∇×A) = J . (2.43)

In the presence of time-varying fields, the integration of Faraday’s law (2.2) yields

E = −∇φ− ∂A
∂t

, (2.44)

where the gradient of the electric potential ∇φ is an integration constant. The contributions of the two terms in the
right-hand side of (2.44) to the current distribution will be treated separately. Substituting (2.44) into the right-hand
side of (2.7) yields

J = Js + Je Js = −σ∇φ Je = −σ ∂A
∂t

, (2.45)

where Js and Je are the source and induced (or eddy) current density respectively. Substituting (2.45) into the right-
hand side of (2.42), we obtain the following partial differential equation for the vector potential

σ
∂A
∂t

+∇× (ν∇×A) = Js . (2.46)
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2.4 Time-Harmonic Formulation
Solving the PDE (2.46) numerically entails a time-stepping procedure of some kind. In practice, a great deal of useful
information can already be gained by assuming that the electromagnetic fields vary sinusoidally in time. Assuming a
pulsation ω = 2πf , we can write a generic electro-magnetic quantity F (x, t) oscillating harmonically in time as

F (x, t) = R[ F̂ (x) exp(jωt) ] , (2.47)

where the magnitude F̂ is a complex-valued quantity consisting of a real and imaginary part R[F̂ ] and I[F̂ ] respec-
tively. In a time-harmonic formulation, the PDEs (2.43) and (2.46) reduce to the following PDE for the amplitude Â
of the vector potential

∇× (ν∇× Â) = Ĵ (2.48)

and
∇× (ν∇× Â) + j ωσ Â = Ĵs (2.49)

respectively. By a reasoning analogous to the derivation of equation (2.23), we reduce the system of coupled PDEs
(2.48) and (2.49) to a scalar PDE. In the former case we obtain the Poisson equation

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
= Ĵz (2.50)

while in the latter a Helmholtz equation with complex shift

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
+ j ω σ Âz = Ĵs,z , (2.51)

where Ĵs,z denotes the z-component of the source current density Ĵs. Equations (2.50) and (2.51) are the governing
PDEs for two-dimensional time-harmonic magnetic field formulations. In Section 2.6 we will argue which circum-
stances motivate the choice for either one of these equations.

In (2.47) we assumed a single frequency oscillatory behavior. In more advanced formulations a small set a discrete
frequencies is taken into account. Such formulations are called multi-harmonic [?, ?].

2.5 Conductor Models
To do

• extends this part to the transient case

• include text on the impedance

Time-varying currents in a conductor magnetically induce eddy currents and voltages trying to counteract their
source. The current will redistribute in such a way that the current density is larger towards the cross-section bound-
aries. This effect is known as the skin-effect and characterized by the skin-depth. The skin-depth δ is typical length
scale measuring the size of the second order term relative to the term of order zero in the PDE (2.51) and is defined as

δ =
√

1
πf σµ

. (2.52)

It is represented schematically in Figure ??. Technically speaking, about 60% of the current flows in the shaded area in
this figure. Different conductor models are distinguished based on the ratio between the skin-depth and the conductor
radius, i.e. on the importance of the skin-effect in modeling the conductor. In this thesis we will consider solid and
stranded conductors. For both conductor models and for time-varying field, one obtains by substituting (1.7) into
(2.45) the relation

Ĵz =
σ

`z
4̂V − j ω σ Âz (2.53)

or, equivalently,

4̂V = `z

(
Ĵz
σ

+ j ω Âz

)
. (2.54)

Subscripts sol and str will be used to indicate properties associated with the solid and stranded conductors respec-
tively.
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2.5.1 Solid Conductors
To add

1. the example in CMP

2. the proximity effect

A solid conductor is a massive bar of electrically conducting material with homogeneous cross-section Ωsol. The
radius of a solid conductor is large compared with the skin-depth δ. The variation of the current density over Ωsol can
therefore not be neglected. The magnitude of the voltage drop 4̂V sol in contrast is constant over Ωsol.

Rotor bars in an induction machine are typically modeled as solid conductors.
To generalize (1.6) for time-harmonic fields in a solid conductor, we integrate both sides of (2.53) over Ωsol. Using

the the fact that 4̂V sol is constant over Ωsol, we find

Îsol = Gsol 4̂V sol − j ω

∫
Ωsol

σ Âz dΩ , (2.55)

where
Gsol =

1
`z

∫
Ωsol

σ dΩ (2.56)

is the Ohmic resistance of the solid conductor (see also e.g. [?]).

2.5.2 Stranded Conductors
The cross-section of a stranded conductor Ωstr is the union of several conductors, each of them too small to be
modeled individually. The skin-depth is large compared to the radius of the individual conductors, allowing the skin
effect in the individual conductors to be neglected. The current density Ĵz is assumed to be constant over Ωstr. Due to
magnetically induced voltages, the variation of potential drop over Ωstr has to be taken into account. Compared with
a solid conductor, the roles of current density and voltage drop are interchanged.

While the solid conductor is a physical entity, the stranded conductor is merely a convenient mathematical tool
that allows one to model, for example, the windings in the stator of an induction machine or the coil of a transformer.

Assuming that the stranded conductor is made up of Nt conductors, each carrying a current Îstr, the average
current density is

Ĵz =
Nt Îstr
Sstr

, (2.57)

where Sstr is the area of Ωstr. The individual conductors forming the stranded conductor are assumed to be connected
in series. By this assumption the potential difference 4̂V str over the latter is equal to the sum of the potential differ-
ences 4̂V over the conductors. This sum is approximated by Nt times the average potential difference 4̂V av over an
individual conductor

4̂V str = Nt 4̂V av , (2.58)

where
4̂V av =

1
Sstr

∫
Ωstr

4̂V dΩ . (2.59)

Substituting (2.54) into (2.59), taking into account that the current distribution (2.57) as well as the conductivity σ are
constant over Ω, one obtains

4̂V str = Rstr Îstr + j ω
Nt `z
Sstr

∫
Ωstr

Âz dΩ , (2.60)

see also e.g. [?, ?], where

Rstr =
N2
t `z
Sstr

∫
Ωstr

1
σ
dΩ (2.61)

is the Ohmic resistance of the stranded conductor. The insulation material surrounding the individual solid conductors
and the air gaps between them can be taken into account by multiplying σ in (2.61) by a positive factor smaller than
one. This factor is called the slot fill factor.
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2.6 Induced Fields in Conductive Media
Relations (2.55) and (2.60) generalize Ohm’s law (1.6) to time-harmonic currents. The first and second term of the
right-hand side of (2.55) represent the resistive and inductive currents respectively . The two terms in the right-hand
side of (2.60) are the resistive and inductive voltage . The relations (2.55) and (2.60) couple magnetic field quantities
with integrated electric ones and are called electrical circuit relations .

To compute the magnetic field over the cross-section of a conductor, appropriate field equations and circuit rela-
tions have to be coupled. The right-hand side in PDE (2.51) can be written in terms of the applied voltage 4̂V sol over
a solid conductor using (2.45) and (1.7)

Ĵs,z = −σ ∂φ
∂z

=
σ

`z
4̂V sol , (2.62)

and is thus constant over Ωsol. It is therefore convenient to choose the PDE (2.51) in the form

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
+ j ω σ Âz =

σ

`z
4̂V sol (2.63)

for the computation of the magnetic field over Ωsol. By a similar argument the magnetic field over the cross-section
of a stranded conductor Ωstr is modeled by PDE (2.50). Upon eliminating the current density by (2.57), this PDE
becomes

− ∂

∂x

(
ν
∂Âz
∂x

)
− ∂

∂y

(
ν
∂Âz
∂y

)
=

Nt
Sstr

Îstr . (2.64)

Conductors can be excited by either a voltage or a current source. If a solid conductor is operated by a voltage
source, the source term in the PDE (2.63) is a known constant, and the PDE can be solved. If instead the solid
conductor is current driven, the source in the PDE has to be calculated from the electrical circuit relation (2.55). In
this case, the PDE and the circuit relation have to be solved simultaneously for the magnetic vector potential and the
applied voltage. To compute the magnetic field distribution of a voltage driven stranded conductor, the PDE (2.64)
and the circuit relation (2.60) have to be solved simultaneously for the vector potential and the applied current.

2.7 Induced Voltage by the Time Variation of the Magnetic Flux
The voltage induced the time-varrying magnetic flux is given by

Vind = −Nt
dψ

dt
, (2.65)

where the minus sign is due to Lenz’s Law. Using the flux-impedance relation (1.13) the above relation can be written
as

Vind =
d

dt
(LI) . (2.66)

In case that dLdt = 0, this formula reduces to

Vind = L
d

dt
(I) . (2.67)

The magnetic flux ψ(t) passing through an oriented surface S with outward normal n is given by the surface integral

ψ(t) =
∫
S

B · dS =
∫
S

B · n dS . (2.68)

In applications of this expression we are typically interested in, the surface S = Score typically denotes the cross-
section of the ferromagnetic core perpendicular to the flux path. In a 2D perpendicular current formulation on the
domain Ωxy , the surface Score is then a line piece perpendicular to the y-axis extending from x = xm to x = xM ,
extruded by a length `z in the z-direction. Using the vector potential A (B = ∇ × A ) as unknown, the above
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expression reduces to

φ(t) =
∫
Score

B · n dS (2.69)

=
∫
Score

By dx dz (2.70)

= −
∫ xM

xm

dx

∫ zM

zm

dz
∂Az
∂x

[By = −∂Az
∂x

] (2.71)

= −`z
∫ xM

xm

dx
∂Az
∂x

(2.72)

= −`z [Az(x = xM , t)−Az(x = xm, t)] (2.73)
= `z [Az(x = xm, t)−Az(x = xM , t)] . (2.74)

In other applications S might consist of a component Score in the core and a component Sair in air (refer to the open
core FCL). In this we can write

φtot(t) = φcore(t) + φair(t) ≈ φcore(t) if φair(t) is small. (2.75)

In an azimuthal current application we have that ...

2.8 Induced Voltage by a Homogenezation Procedure
In this section we review a technique allowing to compute the induced voltage in winded coils (also referred to as
stranded conductors) by integrating its density over the volume in 3D (cross-section in 2D) of the conductor.

2.8.1 Three Dimensional
Need to include pictures of the 3D coils
To compute the induced voltage in winded coils the introduction of the so-called winding function t turns out to be
useful. This is a vector function such that the applied current density in the coil can be expressed as

J = I t (2.76)

We next give two examples of winding functions. For a cylindrical coil in the xy-plane with with center in (x0, y0, z0),
cross-section S and number of turns Nt and excited by a current flowing in counter clock wise direction, we have that
t(x, y, z) = Nt

S (tx(x, y), ty(x, y), 0) where

tx(x, y) =
−(y − y0)√

(x− x0)2 + (y − y0)2
and tx(x, y) =

x− x0√
(x− x0)2 + (y − y0)2

. (2.77)

For a cuboidal coil occupying the surface Ω = (x0, y0) + ([−D,D]× [−W,W ] \ [−d, d]× [−w,w]) in the xy-
plane extruded in the z-direction excited by a current in counter clockwise direction, we have again that t(x, y, z) =
Nt

S (tx(x, y), ty(x, y), 0) where

tx(x, y) =
{
−sgn(y) if|y − y0| > w

d |x− x0|
0 otherwise and ty(x, y) =

{
sgn(x) if|y − y0| ≤ w

d |x− x0|
0 otherwise . (2.78)

In both cases we have that
∇ · t = 0( and thus ∇ · J = 0) and‖t‖ =

Nt
S
. (2.79)

By a homogenization procedure over the individual windings in the coil, the induced voltage can be computed by
integrating the density defined by the dot product t ·E over the volume of the coil

Vind =
∫

Ωcoil

t ·E dΩ . (2.80)

Combining with the previous result, we have that

d
dt (LI) = −Nt dψ(t)

dt =
∫
Ωcoil

t ·E dΩ . (2.81)

This relation is the basis for the field-circuit coupling modeling of a winded coil excited by a voltage source. In what
follows we make the relation for the induced voltage more explicit in two-dimensional computations.
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2.8.2 Two Dimensional Perpendicular Current
In a perpendicular current computation we assume the cross-section of a winded coil to consist of components Scoil,1
and Scoil,2, excited by a current in positive and negative z-direction, respectively. The induced can then be computed
as as follows

Vind = Vind,1 + Vind,2 (2.82)

=
Nt `z
Scoil,1

∫
Scoil,1

Ez dS −
Nt `z
Scoil,2

∫
Scoil,2

Ez dS (2.83)

=
Nt `z
Scoil,1

∫
Scoil,1

∂Az
∂t

dS − Nt `z
Scoil,2

∫
Scoil,2

∂Az
∂t

dS (2.84)

where the minus sign stems from the fact that the current flows in opposite directions in both sides of the coil.

2.8.3 Two Dimensional Azimuthal Current
In a azimuthal current computation we the induced voltage in a coil with cross-section Scoil can the expressed as

Vind =
Nt
Scoil

∫
Scoil

2πr Eφ dS (2.85)

=
Nt
Scoil

∫
Scoil

2πr
∂Aφ
∂t

dS (2.86)

2.9 Boundary Conditions
The partial differential equations introduced before need to be supplied with boundary conditions. In this work we will
make use of homogeneous Dirichlet, Neumann and periodic boundary conditions. When used in combination with a
conformal mapping technique, the latter allow the modeling of infinite domains.

2.9.1 Axial Symmetry

2.9.2 Symmetry Boundary Conditions

2.9.3 Periodic Boundary Conditions
Let Γ1 and Γ2 be two disjoint parts of the boundary of the computational domain as shown in Figure ?? on page ?? for
example. Let n1 and n2 denote the outward normal on Γ1 and Γ2 respectively. Periodic boundary conditions connect
both the vector potential and its normal derivative on Γ1 and Γ2. Periodic boundary conditions state that

Az|Γ1 = Az|Γ2 (2.87)

ν
∂Az
∂n1

|Γ1 = −ν ∂Az
∂n2

|Γ2 . (2.88)

Anti-periodic boundary conditions state that

Az|Γ1 = −Az|Γ2 (2.89)

ν
∂Az
∂n1

|Γ1 = ν
∂Az
∂n2

|Γ2 (2.90)

see e.g. [?, ?]. By imposing periodic boundary conditions one is able to reduce the area of the computational domain.
We illustrate this point by an example. Consider the four-pole alternating current machine depicted in Figure ?? on
page ??. Due to symmetry in field and geometry, it is sufficient to model only two, or even just one pole of the
machine. Figure ?? shows a two-pole half model of the motor being considered. In this model periodic boundary
conditions relate the values on the straight edges at the bottom of the model. In the one-pole quarter model shown in
Figure ??, anti-periodic boundary conditions relate the values of the vertical and horizontal straight edge.

The reduction of the computational domain entails a saving in computational resources required to solve the
problem or allows to obtain higher accuracy for the same problem size.
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2.9.4 Unbounded Domains
In some practical magnetic field computations the domain Ω is unbounded. Different types of so-called open boundary
problems exist. In a first one the accurate estimation of the field in a region of interest might require taking the
surrounding unbounded domain into account. In a second type one is interested in far field effects, i.e. in the strength
of the field at a large distance from the source. An example of the former is the computation of the magnetic field in
the vicinity of a transformer. An example of the latter is the computation of the magnetic field excited by high voltage
lines at ground level.

In numerical computations the unbounded domain needs to be truncated somehow. An overview of truncation
techniques proposed in the literature can be found in [?].

In the application software considered in this work, a conformal mapping technique is used. To describe this
technique formally, consider equation (2.23) posed on the domain Ω = R2. The PDE has to be supplied with the
condition that the potential remains finite at infinity. By properly scaling the potential, one can assume the value at
infinity to be zero, i.e.

Az(x, y) → 0 as
√
x2 + y2 →∞ . (2.91)

The part of Ω that is of interest is enclosed in a disk ΩD centered in (0, 0) . The radius ρ of ΩD is required to be large
enough so that the source term Jz is zero on (ΩD)c = R2 \ΩD. We further assume ν to be constant on (ΩD)c. Hence,
the function Az satisfies the Laplace equation on (ΩD)c. Let AD and ADc denote the restriction of Az to ΩD and
(ΩD)c and nD and nDc the outward normal on ΩD and (ΩD)c respectively. The original problem on R2 is equivalent
with

− ∂

∂x

(
ν
∂AD
∂x

)
− ∂

∂y

(
ν
∂AD
∂y

)
= Jz on ΩD

−∂
2ADc

∂x2
− ∂2ADc

∂y2
= 0 on (ΩD)c ,

(2.92)

supplied with conditions ensuring the continuity ofAz and its normal flux across the boundary ∂ΩD. These continuity
conditions can be stated as

AD|∂ΩD
= ADc |∂ΩD

and ν
∂AD
∂nD

|∂ΩD
= −ν ∂AD

c

∂nDc

|∂ΩD
. (2.93)

After setting z = x+ j y, one applies the conformal mapping

F(z) = 1/z (2.94)

to (ΩD)c. The latter is mapped onto a disk ΩE with radius 1/ρ

F [(ΩD)c] = ΩE . (2.95)

Properties of conformal transformations imply that the function ADc is a harmonic function on the image disk ΩE if
ADc is harmonic on the domain (ΩD)c. The conformal mapping thus transforms the differential problem (2.92)-(2.93)
into

− ∂

∂x

(
ν
∂AD
∂x

)
− ∂

∂y

(
ν
∂AD
∂y

)
= Jz on ΩD

−∂
2ADc

∂x2
− ∂2ADc

∂y2
= 0 on ΩE

(2.96)

supplied with the conditions

AD|∂ΩD
= ADc |∂ΩE

and ν
∂AD
∂nD

|∂ΩD
= −ρ2 ν

∂ADc

∂nE
|∂ΩE

, (2.97)

where nE denotes the outward normal on ΩE . The factor ρ2 appearing in (2.97) is due to the local magnification
1/|F ′| evaluated on ∂ΩD by conformal mapping. Using a conformal mapping we have thus transformed the original
unbounded domain problem into two problems on bounded domains: a Poisson type problem on ΩD and a Laplace
problem on ΩE . The condition (2.91) is assured by imposing the potential to be zero in the center of ΩE

Az = 0 in center of ΩE . (2.98)
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Chapter 3

Magnetic Saturation

In this section we describe the modeling of magnetic saturation in ferromagnetic materials, i.e., the modeling of the
non-linear constitute relation between the magnetic flux B (units T ) and the magnetic field H (units A/m). Using a
vector potential formulation and denoting by B = ‖B‖, H = ‖H‖, the magnetic material law typically considered is

H(B) = ν B = ν0 νr(B)B ⇔ ν(B) =
dH

dB
(B) , (3.1)

where ν0 and ν (νr) denote the reluctivity of vacuum and the material (relative reluctivity), respectively [see paper
Herbert on differential vs. chord reluctivity]. The inverse of the reluctivity is the permeability µ. Using a vector
potential formulation, we have that

‖B‖2 =
(
∂Az
∂y

− ∂Ay
∂z

)2

+
(
−∂Az
∂x

+
∂Ax
∂z

)2

+
(
∂Ay
∂x

− ∂Ax
∂y

)2

(3.2)

Magnetic saturation is such that µr(B) is large and almost constant for small values of B and small almost constant
for large values of B and has a non-linear transition between these two extreme values (see for instance Figure xxx).

In practise engineering practise, the function νr(B) is to be constructed from measured B-H samples. This
process makes the convergence of an FEM computation prone stagnation. We therefore consider analytical expressions
allowing to describe the function νr(B) analytically.

Goals In this chapter we aim at

• giving different analytical expressions for the non-linear B-H -curve modelling magnetic saturation

• give an example of a measured B-H

• illustrate a least square curve fitting technique allow to match the analytical expressions to the given measured
data

To do

• add reference to rational BH-curve approximation

• add reference to Pechstein on approximating the BH-curve

3.1 Analytical Models
To do:

• make all plots of the BH-curves again

• compute the second derivative of the analytical model to see where the curvature changes from positive to
negative.

• give a plot on double axis and deduce for which value of the current the core is in saturation.
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3.1.1 Rational Function Approximation
In [1] the following rational expression modelling the relative reluctivity is given (denoting by B = ‖B‖)

νr = a+
(1− a)B2b

B2b + c
⇔ µr =

1

a+ (1−a)B2b

B2b+c

(3.3)

where the values for the parameters a, b and c are given in Table 3.1. For this models holds that

νr(B = 0) = a (3.4)

and thus the relative permeability at B = 0 is given by 1/a and that

lim
B→∞

νr(B) = 1 (3.5)

and thus the permeability never becomes smaller than µ0 (which is physically correct).

a 2.12e-4
b 7.358
c 1.18e6

Table 3.1: Constants Used in the Rational Approximation

(a) B-H-curve (b) µr-B curve

Figure 3.1: Rational Function Approximation of the B-H curve.

3.1.2 Hyperbolic Function Approximation
In [2] the following approximation is given:

B = C1 arcsinh(C2H) ⇔ H =
1
C2

sinh(
B

C1
) (3.6)

where the values for the parameters C1 and C2 are given in Table (3.2). From this we obtain the chord permeability

µ =
B

H
=

C2B

sinh( BC1
)

(3.7)

µr =
µ

µ0
=

C2B

µ0 sinh( BC1
)

(3.8)
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and the differential permeability

ν =
dH

dB
=

cosh(C2B)
C1C2

(3.9)

µ =
1
ν

=
C1C2

cosh(C2B)
(3.10)

µr =
µ

µ0
=

C1C2

µ0 cosh(C2B)
(3.11)

(3.12)

As in this model
lim

B2→∞
µr(B2) = 0 , (3.13)

is has to be used with due care.

Remark This model requires a non-zero initial guess during intial guess to avoid the singularity at B = 0.

C1 .25 [T]
C2 .06 [m/A]

Table 3.2: Constants Used in the Sinh Approximation

(a) B-H-curve (b) µr-B curve

Figure 3.2: Hyperbolic Function Approximation of a B-H curve.

3.2 Measured Data
In this section we give the measured B-H-data we will use in our numerical examples in subsequent chapters.

3.2.1 Measured BH data
H = [0 310 315 320 330 350 380 410 430 ...
470 500 540 580 620 650 670 720 750 ...
770 820 900 1000 1100 1200 1400 1800 2300 ...
2800 3300 4300 5300 8300 10300 15300 20300 25300 ...
30300 40300 50300 70300 100300 200300 400300 600300 800300 ...
1000300];

B = [0 1.3449 1.3773 1.4003 1.4328 1.4736 1.5112 1.5367 1.5501 ...
1.5715 1.5845 1.5991 1.6114 1.6221 1.6293 1.6337 1.6439 1.6494 ...
1.6529 1.661 1.6724 1.6847 1.6954 1.7048 1.7209 1.7457 ...
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1.7687 1.7866 1.8012 1.8242 1.842 1.8796 1.8975 1.9299 1.9529 ...
1.9708 1.9854 2.0084 2.0262 2.0532 2.0817 2.1371 2.1926 2.225 ...

2.248 2.2659 ];

(a) B-H-curve (b) µr-B curve

Figure 3.3: B-H-curve used in tabular form.

3.3 Tuning the Analyical Models
In this section we performs a fitting of the parameters in the rational and hyperbolic approximation to the measured
data by a non-linear optimisation procedure.

3.4 Further Extension
1. Make graphs of the derivative of µr wrt normB for the analytical and tabular data models. These graphs should

how why the tabular is more difficult to work with.

3.5 Non-Convergence of the Non-linear Iteration during a Time-Stepping
Procedure

During our extentive numerical testing with Comsol Mulphysics, we often encountered difficulties in making the
non-linear iteration within the time-stepping procedure converge. Such difficulties are sometimes good to have as
they point towards an erroneous problem formulation. Sometimes these errors come as a nuisance. In discussing
strategies to overcome these difficulties we distinguish between non-convergence at the initial time step (t = 0) and
non-convergence later in the time stepping procedure (t > 0).

3.5.1 Non-Convergence of the Initial Time Step
Often non-convergence of the initial time step can be cured by providing a better initial guess. An approach that we
found fruitfull is to generate this initial guess using a seperate FEM computation.

3.5.2 Non-Convergence of Later in the Time Stepping Procedure
1. use anyltical BH-curve: limited flexibility

2. use tabular data: hard to obtain curve that is sufficiently smooth
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3.5.3 For Me Open Issues
1. what is the effect of bad analytical approximation of the BH-curve, in particular in underestimating the slope in

the initial part of the BH-curve

2. what do other commeercial FEM packages (Maxwell, ANSYS) do?
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Chapter 4

Things to add

• hysteresis modeling and permanent magnets

• force computations

• iron and copper losses (see notes on safety transformer)

• modeling of motion and ALE formulation

• nodal FEM for double curl equation
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Chapter 5

FEM Computations of Inductance and
Induced Voltage

5.1 Axi-Symmetrical Models
The following experimental data was provided to us by Johan Wolmarans.

1. Coil 1 (larger)

• Inductance at 50Hz: 4.6mH
• Turns: approximately 192, wound in 4 layers
• Wire diameter: 1mm
• Wound around 110mm diameter (55mm radius) pipe
• Coil height: 60mm

2. Coil 2 (as used to measure the carbon fiber sleeve)

• Inductance at 50Hz: 615uH
• Turns: 81, wound in 1 layer
• Wire diameter: 1mm
• Wound around 118mm diameter (59mm radius) pipe
• Coil height: 90mm

(a) Induced voltage (b) Average magnetic flux

Figure 5.1: Axi-symmetrical and 3D computation of the induced voltage and magnetic flux.

5.2 Three Dimensional Models
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L (mH) pre fault (A) post fault (A)
axi-symmetrical 3.39 4.55 16.58
cylindrical 3.24 4.59 16.87
cuboidal 4.51 4.51 14.00
cuboidal with open core 17.29 3.44 5.01

Table 5.1: Values of inductance, pre and post fault current in different configurations.

(a) Axi-symmetrical Model Geometry (b) Axi-symmetrical Model Current

(c) Cylindrical Model Geometry (d) Cylindrical Model Current

(e) Cuboidal Model Geometry (f) Cuboidal Model Current

Figure 5.2: Different coil configurations and associated current waveforms.
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Chapter 6

Two Dimensional FE Models of Inductive
Fault Current Limiters

6.1 TO DO
1. in the first model

• choice of surface S motivated by desire to minimize influence of fringing and leakage flux

• investigate influence influence of space between coil and core

• investige influence of gap in the core

• describe three stage process in solving the model

• include impedance computation after the second stage

• describe the setting of the initial guess in assembling the first jacobian (different from jacobian specified
in femsolver!)

2. additional model

• open core model

• three legs model

Goals

• simulate RL-circuit without having to resort analytical model for the impedance

• compute the impedance of a given configuration in three different ways, using the analytical formula, the mag-
netic energy and the magnetic flux

• compute the current waveform using only the AC coil, the DC coil in two different polarities and with linear
and non-linear core

• check the magnetic flux density in the core legs and verify using the BH-curve to what extend the DC coils
brings the legs in saturation

• investigate to what extend an ODE model allows to simulate this configuration, eventually by first computing
the impedance

• investigate to what extend the geometry of the coils affects the current waveforms

• document issues on time integration
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6.2 Introduction
To do:

• give a definition of the induced voltage in 3D (using the winding function), and show how it simplifies to
perpendicular and azimuthal current application

In these notes we develop a sequence of numerical models of increasing accuracy and complexity for the current
in coils winded around ferromagnetic cores. We start by detailing analytical and semi-analytical models, build two-
dimensional finite element methods and extend these into three dimensions. Modelling results for the current wave
forms are compared with laboratory measuments on scale models of the devices under study. Initially we were mo-
tivated by comparing different configurations of so-called inductive fault current limiters. The study of these devices
was presented at the Comsol Multiphysics Users Conference 2008 in Hannover (+ reference). The configurations
we study are however representative for a wide range of other applications in AC/DC modelling such as electrical
machines, transformers and actuators. We therefore decided to document the solution to different difficulties we
encountered in the modelling in Comsol Multiphysics, hoping that you (the reader) might learn from it.

6.3 Inductive Fault Current Limiters
Wikipedia defines a fault Current Limiter (FCL) to be a device which limits the prospective fault current when a fault
occurs. Different types exist. The fault current limiter we consider here is based on an inductor and consists of a
ferromagnetic core and two coils (see Figure xxx). We will refer to the coils as the AC and DC coils. The AC coil
carries the line current. The DC coil provides the magnetic field on which the working principle of the FCL under
consideration is based. It’s working principle is detailed in [?] and can be summarized as follows:

• nominal regime: a time-independent current in the DC coil bring the core in saturation. A sinusoidal line
current flows throught a wire represented by the the AC winding. Parameters (ohmic resistance of the wire) are
such that the left and right core leg do not desaturate, i.e., the impedance of the left and right core leg remain
small.

• occurence of fault: in case of fault, the drop in the ohmic resistance in the AC coil is compensated by the
magnetically induced fields in the core, i.e., by the raise of the impedance of the coil. The particular construction
of the FCL such that for 0 ≤ t ≤ T/2 (where T denotes the period of the sinusoidal exitation of the AC coil)
one of the core legs desaturates, causing the impedance (and thus the induced voltage) to raise and thus the
current to be limited. During this period the other core leg remains in saturation,. i.e., it does not contribute
to the limiting process. During the period T/2 ≤ t ≤ T , the role of the left and right core leg are inverted,
meaning that over the whole period T sufficient limiting is guaranteed.

6.4 Half Period Limiter

6.4.1 Geometry
In defining the geometry the core acts master and the coil as slaves. This corresponds to the fact that the coils are
wounded around the core.

1. the core:

(a) core variables

crwin = 12.5e-3; crwout = 37.5e-3; crwleg = crwout - crwin;
crhin = 39e-3; crhout = 63e-3;
rad = 3e-3;

(b) core:

core = fillet(rect2(-crwout,crwout,-crhout, crhout), ’radii’, rad) ...
- rect2(crwin,crwin,-crhin,crhin);

2. flux integration lines:

(a) left core leg: line from (-crwout,0) to (-crwin,0)
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Figure 6.1: Open-core configuration.

fluxline1 = line1([-crwout,-crwin],[0,0]);

(b) right core leg: line from (crwin,0) to (crwout,0)

fluxline2 = line1([crwin,crwout],[0,0]);;

3. the AC coil:

(a) AC coil variables

accoilw = 10e-3; accoilh = 20e-3;
xspacer = 2e-3
accoilradin = crlegw/2+xspacer; accoilradout = accoilradin+accoilw;
coilxc = crwin+crwleg/2;

(b) AC coil:

accoil_right = rect2(accoilradin,accoilradout,-accoilh/2,accoilh/2);
accoil = accoil_right+move(accoil_right,-2*accoilradin-accoilw,0);
accoil = move(accoil,accoilxc,0);

4. the DC coil:

(a) DC coil variables

dccoilh = 10e-3; dccoilw = crwin/2;
dccoilradin = (crhout-crhin)/2; dccoilradout = dccoilradin + dccoilh;
dccoilyc = crhin+(crhout-crhin)/2;

(b) DC coil

dccoil_top = rect2(-dccoilw/2,dccoilw/2,dccoilradin,dccoilradout);
dccoil = dccoil_top + move(dccoil_top,0,-2*dccoilradin-dccoilh);
dccoil = move(dccoil,0,dccoilyc);

5. the air:
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Figure 6.2: Three legged core configuration.

(a) air variables

airh = 400e-3; airw = 400e-3

(b) air = rect2(-airh, airh, -airw, airw);

The 1D and 2D entities in the geometry are then combined using

clear c s
c.objs={fluxline1,fluxline2};
c.name={’fluxline1’,’fluxline2’};
c.tags={’g5’,’g6’};

s.objs={air,accoil,dccoil,core};
s.name={’air1’,’accoil’,’dccoil’,’core’};
s.tags={’g1’,’g2’,’g3’,’g4’};

fem.draw=struct(’c’,c,’s’,s);
fem.geom=geomcsg(fem);
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Figure 6.3: Current with and without limiter.

6.4.2 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used as the expression for the induced voltage in scaling invariant for the
induced voltage.

Functions Functions are used to define the different BH-curves.

Global expressions The flux variables and their derivatives are included to check the model. They are not used in
the computation as such. Flux variables are used to verify whether or not the core legs are in saturation. The flux
derivative variables are used to check the induced voltage.

V line = V max sin(ωt) (6.1)
Rline = Rpre− (Rpre−Rpost) ∗ flc2hs(t− Tfault, Tsmooth) (6.2)
V ind1 = −sign(Jz) ∗ acNt ∗ lz/accross ∗ Eint1 (6.3)
V ind2 = −sign(Jz) ∗ acNt ∗ lz/accross ∗ Eint2 (6.4)
V ind = V ind1 + V ind2 (6.5)

Bavrg1 = Bint1/crwleg (6.6)
Bavrg2 = Bint2/crwleg (6.7)
fluxt1 = −acNt ∗ lz ∗Btint1 (6.8)
fluxt2 = −acNt ∗ lz ∗Btint2 (6.9)

6.4.3 Integration Coupling Variables
We keep two variables for the induced voltage in order to be able to monitor them seperately. Subdomain integration
coupling variables for the induced voltage

Eint1 =
∫
accoil1

Ez dΩ =
∫
accoil1

∂Az
∂t

dΩ (6.10)

Eint2 =
∫
accoil2

Ez dΩ =
∫
accoil2

∂Az
∂t

dΩ (6.11)
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Electrical constants
ω 2 π 50

Vmax 28
Rpre 4.0
Rpost 0.1
Tfault 45e-3

Tsmooth 1e-3
Core

lz (Length in z-direction) 25e-3
flcrwleg crwleg

crcross (Core leg cross-section) flcrwleg*lz
AC coil

acNt (Number of turns) 200
accross (Cross-section) accoilw*accoilh

Iac (Current value) 5
DC coil

dcNt (Number of turns) 250
dccross (Cross-section) dccoilw*dccoilh

Idc (Current value) 10
BH curve data

linmurfe 1000
bha 2.12e-4
bhb 7.358
bhc 1.18e6
C1 .25
C2 .06

Table 6.1: Constants Used
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and boundary integration coupling variables for the average flux and the time-derivative of the flux

Bint1 =
∫
fluxline1

By dl =
∫
fluxline1

−∂Az
∂x

dl (6.12)

Bint2 =
∫
fluxline2

By dl =
∫
fluxline2

−∂Az
∂x

dl (6.13)

Btint1 =
d

dt

∫
fluxline1

By dl =
∫
fluxline1

−∂
2Az
∂x ∂t

dl (6.14)

Btint2 =
d

dt

∫
fluxline2

By dl =
∫
fluxline2

−∂
2Az
∂x ∂t

dl (6.15)

where the minus sign in the expressions with index two take the direction of the current into account.

6.4.4 Application mode, subdomain and boundary settings
The magnetic field is modeled by a partial differential equation for the z-component of the magnetic vector potential
Az (perpendicular current model) satisfying the following equation

σ
∂Az
∂t

+
∂

∂x

(
ν0 νr(B)

∂Az
∂x

)
+

∂

∂y

(
ν0 νr(B)

∂Az
∂y

)
= Jz(x, y, t) (6.16)

where σ = 0 everywhere on Ω, supplied with boundary conditions. All time-dependency is thus in the current source!
We do solve this equation with a time-stepping procedure as we need the derivative ∂Az

∂t in defining the induced
voltage.

• material characteristics:

– ferromagnetic core: µr through BH-curve

– coils and air: µr = 1

• current exitation

– DC coil: constant current density equal to Jz,dc = ± Idc,tot

Sdc
= ±dcNt Idc

dccross

– AC coil: voltage driven by a sinusoidal voltage source V line through the circuit relation given below. The
variable Itot is to be computed such that Jz,ac = ± Iac,tot

accross = ±acNt Itot
accross

Different Application Modes In different application modes we subsequently solve for

• the impedance using three different models

• the initial guess for the transient simulation

• the non-linear transient simulation including the fault

6.4.5 ODE Settings
The current in the AC coil is modeled by a crircuit relation (an ODE) for the variable Itot

Vtot = Vres + Vind (6.17)
= RItot + V ind1 + V ind2 (6.18)

6.4.6 Numerical Results
Discuss that

• this configuration is not able to limit the during during both periods.

6.5 Open-Core Configuration
1. geometry of the AC coil changes
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6.6 Three-Leg Configuration
1. new geometry

2. DC coils opposite polarity, AC coils different polarity

3. in the computation of the inductance only only AC coil needs to be taken into account

4. new integration coupling variables

5. new ODE setting

6.6.1 Source file of the open core model

1 % Model o f two c o i l s w i t h p i e r c e d core
2 % The german BH c u r v e r e q u i r e s a DC c u r r e n t away from z e r o i n o r d e r
3 % t o c o n v e r g e
4 f l c l e a r fem fem0
5 c l o s e a l l
6
7 %. . S e t s w i t c h e s . .
8 bhswtch = ’ h y p e r c h o r d ’ ;
9

10 %. . Number o f t u r n s and c u r r e n t v a l u e s
11 %. . The c u r r e n t i n t h e AC c o i l i s s e t t o compute t h e i n d u c t a n c e o f t h e c o i l
12 I d c = 1 0 ;
13 dcNt = 250 ;
14 I a c = 5 ;
15 acNt = 200 ;
16
17 %. . Cr ea t e geome te ry . .
18 % . . . . Core . . . .
19 crwin = 1 2 . 5 e−3;
20 crwout = 3 7 . 5 e−3;
21 c r wl eg = crwout − c rwin ;
22 c r h i n = 39e−3;
23 c r h o u t = 63e−3;
24 r a d = 3e−3;
25 c o r e = f i l l e t ( r e c t 2 (−crwout , crwout ,− c r h o u t , c r h o u t ) , ’ r a d i i ’ , r a d ) − . . .
26 r e c t 2 (−crwin , crwin ,− c r h i n , c r h i n ) ;
27 % . . . . F lux i n t e g r a t i o n l i n e s . . . .
28 f l u x l i n e 1 = l i n e 1 ([− crwout ,− c rwin ] , [ 0 , 0 ] ) ;
29 f l u x l i n e 2 = l i n e 1 ( [ crwin , c rwout ] , [ 0 , 0 ] ) ;
30 % . . . . AC c o i l . . . .
31 a c c o i l w = 10e−3; a c c o i l h = 20e−3;
32 x s p a c e r = 0e−3;
33 a c c o i l r a d i n = crwin + c r w le g + x s p a c e r ; a c c o i l r a d o u t = a c c o i l r a d i n + a c c o i l w ;
34 a c c o i l r i g h t = r e c t 2 ( a c c o i l r a d i n , a c c o i l r a d o u t ,− a c c o i l h / 2 , a c c o i l h / 2 ) ;
35 a c c o i l = a c c o i l r i g h t +move ( a c c o i l r i g h t ,−2∗ a c c o i l r a d i n −acco i lw , 0 ) ;
36 % . . . . DC c o i l . . . .
37 d c c o i l h = 10e−3; d c c o i l w = crwin / 2 ;
38 d c c o i l r a d i n = ( c r h o u t−c r h i n ) / 2 ; d c c o i l r a d o u t = d c c o i l r a d i n + d c c o i l h ;
39 d c c o i l y c = c r h i n +( c r h o u t−c r h i n ) / 2 ;
40 d c c o i l t o p = r e c t 2 (− d c c o i l w / 2 , d c c o i l w / 2 , d c c o i l r a d i n , d c c o i l r a d o u t ) ;
41 d c c o i l = d c c o i l t o p + move ( d c c o i l t o p ,0 ,−2∗ d c c o i l r a d i n −d c c o i l h ) ;
42 d c c o i l = move ( d c c o i l , 0 , d c c o i l y c ) ;
43 % . . . . A i r . . . .
44 xmax = 400 e−3; ymax = 400 e−3;
45 a i r = r e c t 2 (−xmax , xmax , −ymax , ymax ) ;
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(a) Geometry (b) Computed line current

(c) Flux in left and right core leg (d) Induced Voltage

Figure 6.4: Numerical results for the O-shaped core configuration.
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(a) Geometry (b) Computed line current

(c) Flux in left core leg (d) Flux in right core leg

(e) Induced Votage (f) Total Votage

Figure 6.5: Numerical results for the open-core configuration.
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(a) Geometry (b) Computed line current

(c) Flux in left core leg (d) Flux in right core leg

(e) Induced Votage in Left Core Leg (f) Total Induced Votage

Figure 6.6: Numerical results for the three-legs configuration.
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46
47 % A n a l y z e d geomet ry
48 c l e a r c s
49 c . o b j s ={ f l u x l i n e 1 , f l u x l i n e 2 } ;
50 c . name={ ’ f l u x l i n e 1 ’ , ’ f l u x l i n e 2 ’ } ;
51 c . t a g s ={ ’ g5 ’ , ’ g6 ’ } ;
52
53 s . o b j s ={ a i r , a c c o i l , d c c o i l , c o r e } ;
54 s . name={ ’ a i r 1 ’ , ’ a c c o i l ’ , ’ d c c o i l ’ , ’ c o r e ’ } ;
55 s . t a g s ={ ’ g1 ’ , ’ g2 ’ , ’ g3 ’ , ’ g4 ’ } ;
56
57 fem . draw= s t r u c t ( ’ c ’ , c , ’ s ’ , s ) ;
58 fem . geom=geomcsg ( fem ) ;
59
60 %. . P l o t geome t ry . .
61 i f ( 0 )
62 geomplo t ( fem , ’ e d g e l a b e l s ’ , ’ on ’ )
63 re turn
64 end
65
66 fem . c o n s t = { ’om ’ , 2∗ pi ∗ 5 0 , . . .
67 ’Vmax ’ , 2 8 , . . .
68 ’ Rpre ’ , 4 . 0 , . . .
69 ’ Rpos t ’ , 0 . 1 , . . .
70 ’ T f a u l t ’ , 45e − 3 , . . .
71 ’ Tsmooth ’ , 1e − 3 , . . .
72 ’ l z ’ , 50e − 3 , . . .
73 ’ f l c r w l e g ’ , c rwleg , . . .
74 ’ c r c r o s s ’ , ’ l z ∗ f l c r w l e g ’ , . . .
75 ’ f l a c N t ’ , acNt , . . .
76 ’ a c c r o s s ’ , a c c o i l w ∗ a c c o i l h , . . .
77 ’ f l I a c ’ , I ac , . . .
78 ’ f l d c N t ’ , dcNt , . . .
79 ’ f l I d c ’ , Idc , . . .
80 ’ d c c r o s s ’ , d c c o i l w ∗ d c c o i l h , . . .
81 ’ l i n m u r f e ’ , ’ 1000 ’ , . . .
82 ’ bha ’ , ’ 2 . 1 2 e−4 ’ , . . .
83 ’ bhb ’ , ’ 7 . 358 ’ , . . .
84 ’ bhc ’ , ’ 1 . 1 8 e6 ’ , . . .
85 ’C1 ’ , ’ . 2 5 ’ , . . .
86 ’C2 ’ , ’ . 0 6 ’ } ;
87
88 % F u n c t i o n s
89 c l e a r f c n s
90 f c n s {1} . type = ’ i n l i n e ’ ;
91 f c n s {1} . name= ’ r a t i o n a l ( x , bha , bhb , bhc ) ’ ;
92 f c n s {1} . exp r = ’ 1 / ( bha + (1−bha )∗ x ˆ bhb / ( x ˆ bhb+bhc ) ) ’ ;
93 f c n s {1} . dexpr ={ ’ d i f f ( 1 / ( bha +(1−bha )∗ x ˆ bhb / ( x ˆ bhb+bhc ) ) , x ) ’ , . . .
94 ’ 0 ’ , ’ 0 ’ , ’ 0 ’ } ;
95 f c n s {2} . type = ’ i n l i n e ’ ;
96 f c n s {2} . name= ’ h y p e r c h o r d ( x , C1 , C2 ) ’ ;
97 f c n s {2} . exp r = ’C2∗x / ( 4 ∗ p i ∗1e−7∗ s i n h ( x / C1 ) ) ’ ;
98 f c n s {2} . dexpr ={ ’ d i f f ( C2∗x / ( 4 ∗ p i ∗1e−7∗ s i n h ( x / C1 ) ) , x ) ’ , ’ 0 ’ , ’ 0 ’ } ;
99 f c n s {3} . type = ’ i n t e r p ’ ;

100 f c n s {3} . name= ’ b m u r t a b u l a r ’ ;
101 f c n s {3} . method= ’ l i n e a r ’ ;
102 f c n s {3} . ex tme thod = ’ c o n s t ’ ;
103 f c n s {3} . f i l e n a m e = ’ / mnt / d u t i t a 1 / nw / domenico / s o f t w a r e / b h c u r v e / mur normb da ta . t x t ’ ;
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104 fem . f u n c t i o n s = f c n s ;
105
106 % Global e x p r e s s i o n s
107 fem . g l o b a l e x p r = { ’ V l i n e ’ , ’Vmax∗ s i n (om∗ t ) ’ , . . .
108 ’ Vind1 ’ , ’ f l a c N t ∗ l z / a c c r o s s ∗ E i n t 1 ’ , . . .
109 ’ Vind2 ’ , ’ f l a c N t ∗ l z / a c c r o s s ∗ E i n t 2 ’ , . . .
110 ’ Vind ’ , ’ Vind1+Vind2 ’ , . . .
111 ’ Bavrg1 ’ , ’ B i n t 1 / f l c r w l e g ’ , . . .
112 ’ Bavrg2 ’ , ’ B i n t 2 / f l c r w l e g ’ , . . .
113 ’ f l u x t 1 ’ , ’ f l a c N t ∗ l z ∗ B t i n t 1 ’ , . . .
114 ’ f l u x t 2 ’ , ’ f l a c N t ∗ l z ∗ B t i n t 2 ’ , . . .
115 ’ R l i n e ’ , ’ Rpre − ( Rpre−Rpost )∗ f l c 2 h s ( t−T f a u l t , Tsmooth ) ’ } ;
116
117 % I n i t i a l i z e mesh
118 fem . mesh= m e s h i n i t ( fem ) ;
119 %% fem . mesh = m e s h r e f i n e ( fem ) ;
120 %% fem . mesh = m e s h r e f i n e ( fem ) ;
121
122 i f ( 0 )
123 m e s h p l o t ( fem )
124 re turn
125 end
126
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
128
129 % A p p l i c a t i o n mode 0: nomina l c u r r e n t c o m p u t a t i o n
130 i f ( 0 )
131 c l e a r a p p l
132 a p p l . mode . c l a s s = ’ P e r p e n d i c u l a r C u r r e n t s ’ ;
133 a p p l . module = ’ACDC’ ;
134 c l e a r bnd
135 bnd . type = { ’A0 ’ , ’ c o n t ’ } ;
136 bnd . i n d = { [ 1 , 2 , 3 , 3 8 ] , [ 4 : 3 7 , 3 9 : 4 1 ] } ;
137 a p p l . bnd = bnd ;
138 c l e a r equ
139 equ . i n i t = { ’ 1e−6∗ s q r t ( x ˆ2+ y ˆ 2 ) ’ , 0 , 0 , 0 , 0 , 0} ;
140 i f ( strcmp ( bhswtch , ’ l i n e a r ’ )==1)
141 equ . mur = { ’ l i n m u r f e ’ , 1 , 1 , 1 , 1 , 1} ;
142 e l s e i f ( strcmp ( bhswtch , ’ r a t i o n a l ’ )==1)
143 equ . mur = { ’ r a t i o n a l ( normB , bha , 2∗ bhb , bhc ) ’ , 1 , 1 , 1 , 1 , 1} ;
144 e l s e i f ( strcmp ( bhswtch , ’ h y p e r c h o r d ’ )==1)
145 equ . mur = { ’ h y p e r c h o r d ( normB , C1 , C2 ) ’ , 1 , 1 , 1 , 1 , 1} ;
146 e l s e i f ( strcmp ( bhswtch , ’ t a b u l a r ’ )==1)
147 equ . mur = { ’ b m u r t a b u l a r ( normB ) ’ , 1 , 1 , 1 , 1 , 1} ;
148 e l s e
149 error ( ’ e r r o r : : u n d e f i n e d BH s w i t c h ’ )
150 end
151 equ . J e z = {0 , ’−f l a c N t ∗ f l I a c / a c c r o s s ’ , ’ f l a c N t ∗ f l I a c / a c c r o s s ’ , 0 , 0 , 0} ;
152 equ . i n d = { [ 3 , 4 ] , 2 , 8 , 6 , 7 , [ 1 , 5 ] } ;
153 a p p l . equ = equ ;
154 fem . a p p l {1} = a p p l ;
155 fem . f rame = { ’ r e f ’ } ;
156 fem . b o r d e r = 1 ;
157 c l e a r u n i t s ;
158 u n i t s . b a s e s y s t e m = ’ SI ’ ;
159 fem . u n i t s = u n i t s ;
160
161 % ODE S e t t i n g s
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162 c l e a r ode
163 ode . dim={ ’ I t o t ’ } ;
164 ode . f ={ ’ 0 ’ } ;
165 ode . i n i t ={ ’ 0 ’ } ;
166 ode . d i n i t ={ ’ 0 ’ } ;
167 fem . ode=ode ;
168
169 % M u l t i p h y s i c s
170 fem= m u l t i p h y s i c s ( fem ) ;
171
172 % Extend mesh
173 fem . xmesh= meshextend ( fem ) ;
174
175 % S o l v e problem
176 fem . s o l = f e m s t a t i c ( fem , . . .
177 ’ solcomp ’ ,{ ’Az ’ } , . . .
178 ’ outcomp ’ ,{ ’Az ’ } ) ;
179
180 Rpre = 4 ; Rpos t = . 1 ; om = 2∗ pi ∗50 ; Vmax = 2 8 ; l z = 25e−3;
181 Wmtot = l z ∗ p o s t i n t ( fem , ’ . 5∗Bx∗Hx+.5∗By∗Hy ’ , ’ Edim ’ , 2 , ’ Dl ’ , [ 1 : 8 ] ) ;
182 L = 2∗Wmtot / I a c ˆ 2 ;
183 Xpre = s q r t ( Rpre ˆ2 + omˆ2∗L ˆ 2 ) ; I p r e = Vmax / Xpre ;
184 Xpost = s q r t ( Rpos t ˆ2 + omˆ2∗L ˆ 2 ) ; I p o s t = Vmax / Xpost ;
185 f p r i n t f ( ’ The i n d u c t a n c e o f t h e c o i l = %f H. \n ’ , L )
186 f p r i n t f ( ’ Nominal c u r r e n t b e f o r e f a u l t = %f Amp. \n ’ , I p r e )
187 f p r i n t f ( ’ Nominal c u r r e n t a f t e r f a u l t = %f Amp. \n ’ , I p o s t )
188
189 re turn
190
191 end %. . Nominal c u r r e n t c o m p u t a t i o n
192
193 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
194
195 % A p p l i c a t i o n mode 1: g e n e r a t i n g i n i t i a l g u e s s f o r t h e DC c o i l f l u x
196 i f ( 1 )
197 c l e a r a p p l
198 a p p l . mode . c l a s s = ’ P e r p e n d i c u l a r C u r r e n t s ’ ;
199 a p p l . module = ’ACDC’ ;
200 c l e a r bnd
201 bnd . type = { ’A0 ’ , ’ c o n t ’ } ;
202 bnd . i n d = { [ 1 , 2 , 3 , 3 8 ] , [ 4 : 3 7 , 3 9 : 4 1 ] } ;
203 a p p l . bnd = bnd ;
204 c l e a r equ
205 equ . mur = { ’ 100 ’ , 1 , 1 , 1 , 1 , 1} ;
206 equ . J e z = {0 , 0 , 0 , ’ f l d c N t ∗ f l I d c / d c c r o s s ’ , . . .
207 ’−f l d c N t ∗ f l I d c / d c c r o s s ’ , 0} ;
208 equ . i n d = { [ 3 , 4 ] , 2 , 8 , 6 , 7 , [ 1 , 5 ] } ;
209 a p p l . equ = equ ;
210 fem . a p p l {1} = a p p l ;
211 fem . f rame = { ’ r e f ’ } ;
212 fem . b o r d e r = 1 ;
213 c l e a r u n i t s ;
214 u n i t s . b a s e s y s t e m = ’ SI ’ ;
215 fem . u n i t s = u n i t s ;
216
217 % ODE S e t t i n g s
218 c l e a r ode
219 ode . dim={ ’ I t o t ’ } ;

40



220 ode . f ={ ’ 0 ’ } ;
221 ode . i n i t ={ ’ 0 ’ } ;
222 ode . d i n i t ={ ’ 0 ’ } ;
223 fem . ode=ode ;
224
225 % M u l t i p h y s i c s
226 fem= m u l t i p h y s i c s ( fem ) ;
227
228 % Extend mesh
229 fem . xmesh= meshextend ( fem ) ;
230
231 % S o l v e problem
232 f p r i n t f ( ’ G e n e r a t i n g i n i t i a l g u e s s f o r t h e DC c o i l f l u x . . . \ n ’ )
233 fem . s o l = f e m s t a t i c ( fem , . . .
234 ’ solcomp ’ ,{ ’Az ’ } , . . .
235 ’ outcomp ’ ,{ ’Az ’ , ’ I t o t ’ } ) ;
236 f p r i n t f ( ’ . . . done ! \n ’ )
237
238 fem0 = fem ;
239
240
241 end %. . P a r a m e t r i c s o l v e r i n DC wind ing
242
243 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
244
245 % A p p l i c a t i o n mode 2: g e n e r a t i n g i n i t i a l g u e s s f o r t h e AC c o i l f l u x
246 i f ( 1 )
247 c l e a r a p p l
248 a p p l . mode . c l a s s = ’ P e r p e n d i c u l a r C u r r e n t s ’ ;
249 a p p l . module = ’ACDC’ ;
250 c l e a r bnd
251 bnd . type = { ’A0 ’ , ’ c o n t ’ } ;
252 bnd . i n d = { [ 1 , 2 , 3 , 3 8 ] , [ 4 : 3 7 , 3 9 : 4 1 ] } ;
253 a p p l . bnd = bnd ;
254 c l e a r equ
255 i f ( strcmp ( bhswtch , ’ l i n e a r ’ )==1)
256 equ . mur = { ’ l i n m u r f e ’ , 1 , 1 , 1 , 1 , 1} ;
257 e l s e i f ( strcmp ( bhswtch , ’ r a t i o n a l ’ )==1)
258 equ . mur = { ’ r a t i o n a l ( normB , bha , 2∗ bhb , bhc ) ’ , 1 , 1 , 1 , 1 , 1} ;
259 e l s e i f ( strcmp ( bhswtch , ’ h y p e r c h o r d ’ )==1)
260 equ . mur = { ’ h y p e r c h o r d ( normB , C1 , C2 ) ’ , 1 , 1 , 1 , 1 , 1} ;
261 e l s e i f ( strcmp ( bhswtch , ’ t a b u l a r ’ )==1)
262 equ . mur = { ’ b m u r t a b u l a r ( normB ) ’ , 1 , 1 , 1 , 1 , 1} ;
263 e l s e
264 error ( ’ e r r o r : : u n d e f i n e d BH s w i t c h ’ )
265 end
266 equ . J e z = {0 , 0 , 0 , ’ f l d c N t ∗ f l I d c / d c c r o s s ’ , . . .
267 ’−f l d c N t ∗ f l I d c / d c c r o s s ’ , 0} ;
268 equ . i n d = { [ 3 , 4 ] , 2 , 8 , 6 , 7 , [ 1 , 5 ] } ;
269 a p p l . equ = equ ;
270 fem . a p p l {1} = a p p l ;
271 fem . f rame = { ’ r e f ’ } ;
272 fem . b o r d e r = 1 ;
273 c l e a r u n i t s ;
274 u n i t s . b a s e s y s t e m = ’ SI ’ ;
275 fem . u n i t s = u n i t s ;
276
277 % ODE S e t t i n g s
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278 c l e a r ode
279 ode . dim={ ’ I t o t ’ } ;
280 ode . f ={ ’ 0 ’ } ;
281 ode . i n i t ={ ’ 0 ’ } ;
282 ode . d i n i t ={ ’ 0 ’ } ;
283 fem . ode=ode ;
284
285 % M u l t i p h y s i c s
286 fem= m u l t i p h y s i c s ( fem ) ;
287
288 % Extend mesh
289 fem . xmesh= meshextend ( fem ) ;
290
291 % S o l v e problem
292 f p r i n t f ( ’ G e n e r a t i n g i n i t i a l g u e s s f o r t h e DC c o i l f l u x . . . \ n ’ )
293 fem . s o l = f e m s t a t i c ( fem , . . .
294 ’ i n i t ’ , fem0 . s o l , . . .
295 ’ solcomp ’ ,{ ’Az ’ } , . . .
296 ’ outcomp ’ ,{ ’Az ’ , ’ I t o t ’ } , . . .
297 ’ Pname ’ , ’ f l I d c ’ , . . .
298 ’ P l i s t ’ , [ I d c ] , . . .
299 ’ M a x i t e r ’ , 4 0 , . . .
300 ’ Nto l ’ ,1 e−8);
301 f p r i n t f ( ’ . . . done ! \n ’ )
302
303 fem0 = fem ;
304
305 end %. . G e n e r a t r i n g i n i t i a l g u e s s f o r t h e AC f l u x
306
307 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
308
309 % A p p l i c a t i o n mode 3: t r a n s i e n t s i m u l a t i o n
310 % S a t u r a t i o n c u r r e n t i n t h e DC wind ing
311 % ODE s o l u t i o n i n t h e AC wind ing
312
313 c l e a r a p p l
314 a p p l . mode . c l a s s = ’ P e r p e n d i c u l a r C u r r e n t s ’ ;
315 a p p l . module = ’ACDC’ ;
316 c l e a r prop
317 prop . a n a l y s i s = ’ t r a n s i e n t ’ ;
318 a p p l . p rop = prop ;
319 c l e a r bnd
320 bnd . type = { ’A0 ’ , ’ c o n t ’ } ;
321 bnd . i n d = { [ 1 , 2 , 3 , 3 8 ] , [ 4 : 3 7 , 3 9 : 4 1 ] } ;
322 a p p l . bnd = bnd ;
323 c l e a r equ
324 equ . i n i t = { ’ 1e−6∗ s q r t ( x ˆ2+ y ˆ 2 ) ’ , 0 , 0 , 0 , 0 , 0} ;
325 i f ( strcmp ( bhswtch , ’ l i n e a r ’ )==1)
326 equ . mur = { ’ l i n m u r f e ’ , 1 , 1 , 1 , 1 , 1} ;
327 e l s e i f ( strcmp ( bhswtch , ’ r a t i o n a l ’ )==1)
328 equ . mur = { ’ r a t i o n a l ( normB , bha , 2∗ bhb , bhc ) ’ , 1 , 1 , 1 , 1 , 1} ;
329 e l s e i f ( strcmp ( bhswtch , ’ h y p e r c h o r d ’ )==1)
330 equ . mur = { ’ h y p e r c h o r d ( normB , C1 , C2 ) ’ , 1 , 1 , 1 , 1 , 1} ;
331 e l s e i f ( strcmp ( bhswtch , ’ t a b u l a r ’ )==1)
332 equ . mur = { ’ b m u r t a b u l a r ( normB ) ’ , 1 , 1 , 1 , 1 , 1} ;
333 e l s e
334 error ( ’ e r r o r : : u n d e f i n e d BH s w i t c h ’ )
335 end

42



336 equ . J e z = {0 , ’ f l a c N t ∗ I t o t / a c c r o s s ’ , ’−f l a c N t ∗ I t o t / a c c r o s s ’ , . . .
337 ’ f l d c N t ∗ f l I d c / d c c r o s s ’ , ’−f l d c N t ∗ f l I d c / d c c r o s s ’ , 0} ;
338 equ . i n d = { [ 3 , 4 ] , 2 , 8 , 6 , 7 , [ 1 , 5 ] } ;
339 a p p l . equ = equ ;
340 fem . a p p l {1} = a p p l ;
341 fem . f rame = { ’ r e f ’ } ;
342 fem . b o r d e r = 1 ;
343 c l e a r u n i t s ;
344 u n i t s . b a s e s y s t e m = ’ SI ’ ;
345 fem . u n i t s = u n i t s ;
346
347 % Coupl ing v a r i a b l e e l e m e n t s
348 c l e a r e l e m c p l
349 % I n t e g r a t i o n c o u p l i n g v a r i a b l e s
350 c l e a r elem
351 elem . elem = ’ e l c p l s c a l a r ’ ;
352 elem . g = { ’ 1 ’ } ;
353 s r c = c e l l ( 1 , 1 ) ;
354 c l e a r bnd
355 bnd . exp r = {{{} ,{} , ’By ’ ,{} ,{} ,{}} ,{{} ,{} ,{} ,{} , ’By ’ ,{}} ,{{} ,{} , ’−Azxt ’ ,{} , . . .
356 {} ,{}} ,{{} ,{} ,{} ,{} , ’−Azxt ’ ,{}} ,{} ,{}} ;
357 bnd . i p o i n t s = {{{} , ’ 4 ’ , ’ 4 ’ ,{} ,{} ,{}} ,{{} ,{} ,{} , ’ 4 ’ , ’ 4 ’ ,{}} ,{{} , ’ 4 ’ , ’ 4 ’ ,{} ,{} , . . .
358 {}} ,{{} , ’ 4 ’ ,{} , ’ 4 ’ , ’ 4 ’ ,{}} ,{} ,{}} ;
359 bnd . f rame = {{{} , ’ r e f ’ , ’ r e f ’ ,{} ,{} , ’ r e f ’ } ,{{} ,{} ,{} , ’ r e f ’ , ’ r e f ’ , ’ r e f ’ } ,{{} , . . .
360 ’ r e f ’ , ’ r e f ’ ,{} ,{} , ’ r e f ’ } ,{{} , ’ r e f ’ ,{} , ’ r e f ’ , ’ r e f ’ , ’ r e f ’ } ,{} ,{}} ;
361 bnd . i n d = {{ ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’ , ’ 11 ’ , ’ 12 ’ , ’ 13 ’ , ’ 14 ’ , ’ 15 ’ , . . .
362 ’ 16 ’ , ’ 17 ’ , ’ 18 ’ , ’ 19 ’ , ’ 20 ’ , ’ 21 ’ , ’ 22 ’ , ’ 23 ’ , ’ 24 ’ , ’ 25 ’ , ’ 26 ’ , ’ 27 ’ , ’ 28 ’ , ’ 31 ’ , . . .
363 ’ 32 ’ , ’ 33 ’ , ’ 34 ’ , ’ 35 ’ , ’ 36 ’ , ’ 37 ’ , ’ 38 ’ , ’ 39 ’ , ’ 40 ’ } ,{ ’ 6 ’ } ,{ ’ 10 ’ } ,{ ’ 29 ’ } ,{ ’ 30 ’ } , . . .
364 { ’ 41 ’ , ’ 42 ’ }} ;
365 c l e a r equ
366 equ . exp r = {{} ,{} ,{} ,{} ,{{} , ’−Ez ’ ,{} ,{}} ,{{} ,{} ,{} , ’ Ez ’ }} ;
367 equ . i p o i n t s = {{} ,{} ,{} ,{} ,{{} , ’ 4 ’ , ’ 4 ’ ,{}} ,{{} ,{} ,{} , ’ 4 ’ }} ;
368 equ . f rame = {{} ,{} ,{} ,{} ,{{} , ’ r e f ’ , ’ r e f ’ , ’ r e f ’ } ,{{} ,{} , ’ r e f ’ , ’ r e f ’ }} ;
369 equ . i n d = {{ ’ 1 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ } ,{ ’ 2 ’ } ,{ ’ 7 ’ } ,{ ’ 8 ’ }} ;
370 s r c {1} = {{} , bnd , equ } ;
371 elem . s r c = s r c ;
372 geomdim = c e l l ( 1 , 1 ) ;
373 geomdim{1} = {} ;
374 elem . geomdim = geomdim ;
375 elem . v a r = { ’ B i n t 1 ’ , ’ B i n t 2 ’ , ’ B t i n t 1 ’ , ’ B t i n t 2 ’ , ’ E i n t 1 ’ , ’ E i n t 2 ’ } ;
376 elem . g l o b a l = { ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ } ;
377 elem . maxvars = {} ;
378 e l e m c p l {1} = elem ;
379 fem . e l e m c p l = e l e m c p l ;
380
381 % ODE S e t t i n g s
382 c l e a r ode
383 ode . dim={ ’ I t o t ’ } ;
384 ode . f ={ ’ R l i n e ∗ I t o t +Vind−V l i n e ’ } ;
385 ode . i n i t ={ ’ 0 ’ } ;
386 ode . d i n i t ={ ’ 0 ’ } ;
387 fem . ode=ode ;
388
389 % M u l t i p h y s i c s
390 fem= m u l t i p h y s i c s ( fem ) ;
391
392 % Extend mesh
393 fem . xmesh= meshextend ( fem ) ;
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394
395 % S o l v e problem
396 fem . s o l = femt ime ( fem , . . .
397 ’ i n i t ’ , fem0 . s o l , . . .
398 ’ solcomp ’ ,{ ’Az ’ , ’ I t o t ’ } , . . .
399 ’ outcomp ’ ,{ ’Az ’ , ’ I t o t ’ } , . . .
400 ’ a t o l ’ ,1 e − 6 , . . .
401 ’ r t o l ’ ,1 e − 6 , . . .
402 ’ t l i s t ’ , [ 0 : 0 . 0 0 1 : 0 . 0 8 ] , . . .
403 ’ t o u t ’ , ’ t l i s t ’ , . . .
404 ’ n l s o l v e r ’ , ’ manual ’ , . . .
405 ’ n t o l f a c t ’ , 0 . 0 1 , . . .
406 ’ m a x i t e r ’ , 2 5 , . . .
407 ’ d t e c h ’ , ’ c o n s t ’ , . . .
408 ’damp ’ , 1 . 0 , . . .
409 ’ j t e c h ’ , ’ minimal ’ , . . .
410 ’ l i n s o l v e r ’ , ’ p a r d i s o ’ , . . .
411 ’ e r r o r c h k ’ , ’ o f f ’ ) ;
412
413 % P l o t c u r r e n t
414 p o s t g l o b a l p l o t ( fem , ’ I t o t ’ )
415 p o s t g l o b a l p l o t ( fem , { ’ Bavrg1 ’ , ’ Bavrg2 ’ } )
416 p o s t g l o b a l p l o t ( fem , { ’ Vind1+Vind2 ’ , ’ f l u x t 1 + f l u x t 2 ’ } )
417 p o s t g l o b a l p l o t ( fem , ’ I t o t ’ )
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Chapter 7

Three Dimensional FE Models of Inductive
Fault Current Limiters

To do

• add references to De Gersem and Dular on the field circuit coupling

(a) Open core (b) Three-leg four winding

Figure 7.1: Geometries studied

7.1 Open-Core Configuration

7.1.1 Geometry
In defining the geometry, the core acts as master, while the DC and AC coil act as slave. The geometry will consist of
the following four parts:

1. the core: build by extruding a working plane in the yz-plane in the x-direction. There will be a relation between
the depth and width of the core leg.

(a) core variables

crlegw = ;
crwin = ; crwout = crwin + crlegw;
crhout = ; crhin = ;
crd = ;

(b) core working plane:

core_plane = fillet(rect2(-crwout,crwout,-crhout, crhout), ’rad’, rad) ...
- fillet(rect2(crwin,crwin,-crhin,crhin), ’rad’, rad);
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(c) core extrusion

set working plane at x = 0
core = extrude(core_plane, ’distance’, 2*crd);

2. flux integration surfaces:

3. the generic coil: build by extruding a working plane in the xy-plane in the z-direction

(a) generic coil variables

coilw = ; coilh = ;
yspacer = ; zspacer = ;
coilradin = crlegw/2+yspacer; coilradout = coilradin+coilw;
coilyc = crwin+crwleg/2; coilzc= coilh/2 + zspacer;

(b) coil working plane:

coil_plane = circ2(coilradout) - circ2(coilradin);

(c) coil extrusion

set working plane at z = 0
coil = extrude(coil_plane, ’distance’, coilh)

4. the DC coil: by moving the generic coil in positive y-direction and in positive z-direction

(a) DC coil variable

dccoilzc= coilh/2 + zspacer;

(b) dccoil = move(coil,0,coilyc,dccoilzc);

5. the AC coil: by moving the generic coil in positive y-direction and in negative z-direction

(a) AC coil variable

accoilzc= -coilh/2 - zspacer;

(b) accoil = move(coil,0,coilyc,accoilzc);

6. the air: build using the block3 command

For the ease of modification of this geometry we will work with a full model.

7.1.2 Meshing
Currently the meshing happens fully automatically, excepts for the option hauto used in meshinit. Due to this
automation, difficulties may occur in case the space between the coils and the core leg is to small. This issue will have
to be dealt with in the future.

7.1.3 Constants, Functions and Subdomain and Global Expressions
Constants

Note that a fill-factor in the coils in not used

Functions

Here we define the BH curves and the winding functions.

Subdomain expressions

Here we define the densities for the induced voltage

Global expressions

Here we define the electrical excitation and the induced voltage.
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Electrical constants
ω 2 π 50

DC coil
Number of turns

Cross-section
Current value

AC coil
Number of turns

Cross-section
BH curve data

a 2.12e-4
b 7.358
c 1.18e6

C1 .25
C2 .06

Table 7.1: Constants Used

7.1.4 Application modes
We solve for both the vector and scalar potential. The scalar potential is used to avoid that during time integration
components in the null space of the curl-curl operator are introduced.

7.1.5 Integration coupling variables
Here we integrate the induced voltage density to obtain the total induced voltage.

7.1.6 Definition of the ODE
The sum of resistive and induced voltage is at all times equal to the total applied voltage.

7.1.7 Solution process

7.1.8 Post processing

7.2 Different solution modes

7.2.1 Linear core

7.2.2 Non-linear core
Define the different stages.
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Chapter 8

Size Optimization

1. zeroth order model by Dalibor: number of winding determines the Ohmic losses. These losses should not exceed
an a-priori established limit. This is guaranteed by imposing the number of turns. From this number of turns
and from the value of the applied voltage, normB and by using the analyical expressions for the impedance and
the induced voltage, an estimate of the leg cross-section, and thus the leg width can be establised.

2. formulation of the sizing optimization (later extend to topology optimization) problem
(in the order in which we intend to solve the problem):

(a) minimize mass subject to sufficient current limiting capabilities. This limiting capability can be set equal
to the one of the initial configuration.

(b) maximize current limiting capabilities subject to a constraint on the mass (same remark as in previous
case)

(c) multi-objective optimization problem with mass and limiting capability as conflicting objectives: compute
the Pareto-front (can be done easily using an analytical model)

3. design variables and box constraints: we first consider the sizes of the core as design variables. In the design,
the vertical and horizontal core leg width should remain equal. We therefore have four design variables: the
half inner window width and height (cr w in and cr h in), the depth (cr d) and core leg width (cr leg w). The
lower bounds on the first two variables should be such to leave sufficient space for the dc coil. In a first analysis
the size of the inner window and the core depth can be taken to constant. In a second analysis we can allow the
height of the inner window to change. We observe that changing the width of the window implies more material
for the AC coil. The same is not true for changes in the height.
Experiments by Dalibor indicate that for the current limiting capability is most sensitive to the cross-section of
the core legs and the number of turns in the ac coil.
In a later stage we will add dimensions of the ac and dc coil as design variables and number of turns of the coil
(mixed integer problem).

4. computation of the objectives: for the computation of the mass we use

core-mass = ρ cr d [2(cr h in+ cr leg w) · 2(cr w in+ cr leg w)− 2cr h in · 2cr w in)] (8.1)
= ρ cr d [4cr leg w · (cr h in+ cr h in+ cr leg w)] ; (8.2)

for the computation of the current limiting capability or induced voltage Vind we will for time being consider
a time-harmonic computation ( ddt → jω) of the post-fault situation. Doing so we do not take the peak current
into account. We have that

I = Re[Î exp(jωt)] , (8.3)

and solve for Î . We consider the following three models of increasing complexity:

(a) analytical model. One of the difficulties in the analytical model is the correct estimation of the flux path.
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We have that

Vind =
d

dt
(LI) (8.4)

= jωL I (8.5)

= jωµrµ0N
2
ac

Ac
l
I (8.6)

= 2π j fµrµ0N
2
ac

cr leg w · cr d
l

I , (8.7)

where l denotes the length of the flux path. This means that the induced voltage lags the current by π/2
and its amplitude is function of the design variables. In a classical ac core layout, one could put

l = 2(cr h in+ cr w in+ cr w leg) (8.8)

For the open-core a more appropriate expression for the flux path could be

l = C · cr h in (8.9)

where C > 1 is a constant to be determined.

(b) 2D and 3D time-harmonic FEM model. In this model we have

Vind = Nac
d

dt

∫
Scr

BydΩ = jωNac

∫
Scr

BydΩ = Vind,1 − Vind,2 , (8.10)

where
Vind,i =

Nac `z
Scl,i

∫
Scl,i

EzdΩ = jω
Nac `z
Scl,i

∫
Scl,i

AzdΩ . (8.11)

5. initial configuration and objective values:

parameter notation value units
mass density core ρ 7850 kg/m3

number of AC turns Nac 100 -

Table 8.1: parameter values

cr w in xxx [mm] core-mass xxx [kg]
cr h in xxx [mm] Vind xxx [V]

cr leg w xxx [mm]
cr d xxx [mm]

Table 8.2: Initial configuration and objective values.

6. coarse model (analytical) design problem and solution techniques: in case we set out to minimize the mass, we
obtain:
find x∗ ∈ X such that:

x∗ = argminx∈Xcore-mass(x) such that Vind(x) ≥ Vind,0 (8.12)

By incorporating the constraint on the induced voltage in the definition of the design space space, we can
formulate this as
find x∗ ∈ X such that:

x∗ = argminx∈Xcore-mass(x) (8.13)

We intend to solve this problem using the Nelder-Mead simplex method and a gradient based optimization
algorithm with exact gradients with multiple starting points. Can the latter be done in Maple?
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7. Pareto front: generate the coarse model Pareto front using a brute force approach (4-fold loop in the design
space).

8. space mapping optimization: identity mapping on the mass, constraint mapping on the induced voltage.

9. work in stages: Pareto front for analytical model (Dalibor?), build 2D time-harmonic FEM (Domenico), Pareto
front for 2D FEM model, build space-mapping function via a least-squares procedure, Pareto front for mapped
coarse model and comparison with FEM model, extend to 3D FEM, extend from time-harmonic to transient.
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