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Problem Statement

The model consists of two governing equations for the concentration profile of the oil ϕ, and the pressure p:

ϕt +∇ · (u⃗oϕ) =M∇ ·
(
ϕ∇δE

δϕ

)
(1)

− ϕt +∇ · (u⃗w(1− ϕ)) = −M∇ ·
(
ϕ∇δE

δϕ

)
(2)

with corresponding flow described by

u⃗o = −k̃o
[
∇p+ ρ∇ψ − δE

δϕ
∇ϕ

]
− ko(1− ϕ)∇δE

δϕ
(3)

u⃗w = −k̃w
[
∇p+ ρ∇ψ − δE

δϕ
∇ϕ

]
+ kwϕ∇

δE

δϕ
(4)

Here, k, ko, and kw are positive mobility coefficients with k̃i = k + ki, and M is a positive, diffusion mobility. The
SAW effects are incorporated by creating a new effective pressure of the system, p̃ = p + ρψ, where ρ is a matched
density for the binary mixture (an assumption of the model) and ψ will take the form of the exponential below as
per previous research ∗:

ψ = (1 + λ2)A2ω2e−α(x+λz) (5)

Notice, α is an inverse attenutation length for the SAW wave in the x-direction, (λα)−1 is the attenuation length in
the z-direction, ω = 2πf is the angular frequency, and A is the maximum amplitude of the vertical displacements at
the surface of the solid substrate due to the SAW. We consider the SAW acting on both components of the mixture
with the only difference being captured in the coefficients k̃o, k̃w. Further, in accordance with Cahn-Hilliard theory,
we use an approximate double-well potential for the homogeneous free engergy:

f(ϕ) =
Ẽ

4
ϕ2(1− ϕ)2 (6)

See Appendix B for a detailed look at the parameter values investigated.

Non-Dimensionalization

We start by non-dimensionalizing equations 3-4 with the assumption that the length scale in both the x and z
directions is the same. Hence, we scale:

(x, z) =
1

α
(x̂, ẑ), (uo, vo, uw, vw) =

1

αT
(ûo, v̂o, ûw, v̂w), p̃ = Πp̂, t = T t̂, f = Ēf̂ (7)

where Π = ρ(1+λ2)A2ω2, ψ̂ = e−(x+λz) and T is to be determined. Considering 3, to simplify we choose T = 1
α2kwψo

.
With these scalings, and dropping hats henceforth for convenience, the dimensionless form of 3-4 is

u⃗o = −(κ0 + κ1)
[
∇p−

(
Ef ′(ϕ)− ε2∇2ϕ

)
∇ϕ

]
− κ0(1− ϕ)∇

[
Ef ′(ϕ)− ε2∇2ϕ

]
(8)

u⃗w = −(1 + κ1)
[
∇p−

(
Ef ′(ϕ)− ε2∇2ϕ

)
∇ϕ

]
+ ϕ∇

[
Ef ′(ϕ)− ε2∇2ϕ

]
(9)

where we have defined the following nondimensional parameters

E =
Ē

Π
, ε2 =

ϵ2α2

Π
, κ0 =

ko
kw
, κ1 =

k

kw
, M =

M

kw
(10)
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Further, the dimensionless governing equations 1-2 are:

ϕt +∇ · [ϕu⃗o] = ∇ ·
[
Mϕ∇

(
Ef ′(ϕ)− ε2∇2ϕ

)]
(11)

− ϕt +∇ · (u⃗w(1− ϕ)) = −∇ ·
(
Mϕ∇

(
Ef ′(ϕ)− ε2∇2ϕ

))
(12)

Now, we can define the dimensionless auxillary variables:

µ = Ef ′(ϕ)− ε2∇2ϕ (13)

P⃗ = ∇p− µ∇ϕ (14)

so that the flow may be written more concisely as:

u⃗o = −(κ0 + κ1)P⃗ − κ0(1− ϕ)∇µ (15)

u⃗w = −(1 + κ1)P⃗ + ϕ∇µ (16)

To model this in Comsol, we define our dependent variables as:

u⃗ = (ϕ, p, µ, P1, P2)
T = (u1, u2, u3, u4, u5)

T (17)

with governing equations given by 11, 12, 13 and 14. Below, we rewrite these equations into Comsol’s PDE Coeffi-
cients Form and list the non-zero coefficients:

For i = 1:

∂u1
∂t

+
∂

∂x1

[
−((κ0 + κ1)u1)u4 − (κ0u1(1− u1) +Mu1)

∂u3
∂x1

]
+

∂

∂x2

[
−((κ0 + κ1)u1)u5 − (κ0u1(1− u1) +Mu1)

∂u3
∂x2

]
= 0

(18)
with non-zero coefficients

d11 = 1, α141 = α152 = (κ0 + κ1)u1, c1311 = c1322 = κ0u1(1− u1) +Mu1 (19)

For i = 2:

−∂u1
∂t

+
∂

∂x1

[
−(1 + κ1)(1− u1)u4 + (u1(1− u1) +Mu1)

∂u3
∂x1

]
+

∂

∂x2

[
−(1 + κ1)(1− u1)u5 + (u1(1− u1) +Mu1)

∂u3
∂x2

]
= 0

(20)

with non-zero coefficients

d21 = −1, α241 = α252 = (1 + κ1)(1− u1), c2311 = c2322 = −u1(1− u1)−Mu1 (21)

For i = 3:

ε2(
∂2u1
∂x21

+
∂2u1
∂x22

) + u3 = Ef ′(ϕ) (22)

with non-zero coefficients

c3111 = c3122 = −ε2, a33 = 1, f3 = Ef ′(ϕ) (23)

For i = 4:

− ∂u2
∂x1

+ u3
∂u1
∂x1

+ u4 = 0 (24)

with non-zero coefficients
β421 = −1, β411 = u3, a44 = 1 (25)

For i = 5:

− ∂u2
∂x2

+ u3
∂u1
∂x2

+ u5 = 0 (26)
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with non-zero coefficients
β522 = −1, β512 = u3, a55 = 1 (27)

Taking a detailed look at the Comsol “No-Flux” condition given by:

n · (c∇u⃗+ αu⃗− γ) = 0 =⇒ nl

(
cijkl

∂uj
∂xk

+ αijluj − γil

)
= 0 (28)

we can see that for the model described above, the boundary conditions this is enforcing at x = 0, 1 are

c1311
∂µ
∂x + α141P1

c2311
∂µ
∂x + α241P1

c3111
∂ϕ
∂x

0

0


= 0⃗

and at z = 0, 1 the boundary conditions are 

c1322
∂µ
∂z + α152P2

c2322
∂µ
∂z + α252P2

c3122
∂ϕ
∂z

0

0


= 0⃗

In terms of ϕ and p, these boundary conditions amount to the following at x = 0, 1:

[κ0ϕ(1− ϕ) +Mϕ]
(
Ef ′′(ϕ)ϕx − ε2(ϕxxx + ϕzzx)

)
+ [(κ0 + κ1)ϕ]

(
px −

(
Ef ′(ϕ)− ε2(ϕxx + ϕzz)

)
ϕx

)
− [ϕ(1− ϕ) +Mϕ]

(
Ef ′′(ϕ)ϕx − ε2(ϕxxx + ϕzzx)

)
+ [(1 + κ1)(1− ϕ)]

(
px −

(
Ef ′(ϕ)− ε2(ϕxx + ϕzz)

)
ϕx

)
−ε2ϕx

0

0


= 0⃗

and at z = 0, 1 the boundary conditions are

[κ0ϕ(1− ϕ) +Mϕ]
(
Ef ′′(ϕ)ϕz − ε2(ϕxxz + ϕzzz)

)
+ [(κ0 + κ1)ϕ]

(
pz −

(
Ef ′(ϕ)− ε2(ϕxx + ϕzz)

)
ϕz

)
− [ϕ(1− ϕ) +Mϕ]

(
Ef ′′(ϕ)ϕz − ε2(ϕxxz + ϕzzz)

)
+ [(1 + κ1)(1− ϕ)]

(
pz −

(
Ef ′(ϕ)− ε2(ϕxx + ϕzz)

)
ϕz

)
−ε2ϕz

0

0


= 0⃗
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Appendix A

COMSOL Multiphysics formulation of PDE Coefficients Form solves, by finite elements, a vectorial equation for the
unknown vector u⃗ = (u1, u2, ..., uN )T which reads as:

eee
∂2u⃗

∂t2
+ ddd

∂u⃗

∂t
+∇ · (−ccc∇u⃗− αu⃗+ γ) + β∇u⃗+ aaau⃗ = f⃗ (29)

where the coefficients of the N scalar equations are in the matrices eee,ddd, γ,aaa (of dimensions N×N), α, β (of dimensions

N ×N × n), ccc (of dimensions N ×N × n× n) and the vector f⃗ (of dimension N), where n is the spatial dimension
of the problem (n = 1, 2, 3). In index notation, this expression reads as

eij
∂2uj
∂t2

+ dij
∂uj
∂t

+
∂

∂xl

(
−cijkl

∂uj
∂xk

− αijluj + γil

)
+ βijl

∂uj
∂xl

+ aijuj = fi (30)

where i, j = 1, ..., N and k, l = 1, ..., n.

Appendix B

In this section, we provide a complete list of parameters and variables in the problem with their dimensions, numerical
values, and a brief description:

Parameter Value Fundamental Unit Description

k L3T
M Mobility coefficient for mass-averaged velocity

ko
L3T
M Mobility coefficient for oil

kw
L3T
M Mobility coefficient for water

M L3T
M Diffusion mobility coefficient

Ẽ M
LT 2 Energy coefficient from CH Theory

ϵ2 ML
T 2 Width of the diffuse interface from CH Theory

ρ M
L3 Matched density of mixture

A L Maximum amplitude of vertical displacements at surface due to SAW

α 1
L Inverse attenuation length for SAW in x

ω 1
T Angular frequency of SAW

λ 1 (λα)−1 is attenuation length for SAW in z
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