

2011年COMSOL中国区用户年会

非对称结构中表面等离激元的 传输操控

指导老师: 李智 龚旗煌 报 告 人: 陈建军

> 2011年10月18日 北京大学物理学院 北京邮电大学理学院

主要内容

▶ 背景介绍

▶ 总结

非对称单缝中SPP的全光调制 单向激发、分束及宽带单向激发 基于耦合腔效应高分辨的SPP器件

背景介绍

表面等离激元(surface plasmon polaritons, SPPs)是光场和金属表面自由电子相互作用形成的一 种光波模式,该模式的场强离开金属表面指数衰减。

金属和介质里的磁场分布为:

$$\begin{cases} H_{y1} = A \exp(-k_{z1}z) \exp(i\beta x - i\omega t) \\ H_{y2} = B \exp(k_{z2}z) \exp(i\beta x - i\omega t) \end{cases}$$

其中
$$\begin{cases} k_{z1} = \sqrt{\beta^2 - \varepsilon_1 \omega^2 / c^2} \\ k_{z2} = -\sqrt{\beta^2 - \varepsilon(\omega) \omega^2 / c^2} \end{cases}$$

由Maxwell方程和边界条件可得SPPs的波矢:

SPPs色散曲线

Nature 424, 824 (2003)

激发结构→动量匹配

SPPs激发装置的示意图

(a) Kretschmann 结构; (b) 双层Kretschmann结构; (c) Otto结构;(d) 利用NSOM探针激发; (e)光栅衍射激发; (f) 粗糙表面的激发

表面等离激元(SPP): 电磁场能量束缚很好,可突破衍射极限。因此在<mark>纳米集成光</mark> 学中具有重要应用,是小尺度下电光器件结合的桥梁。

Nature **440**, 508 (2006) Nat. Photonics, **3**, 55 (2009)

Scientific American, **296**, 56-63 (2007)

<u>对称结构在一定程度上限制了SPP的性能和应用</u>

非对称结构:实现对SPP传输的操控

主要内容

▶ 背景介绍

➢ 非对称单缝中SPP的全光调制

▶ 单向激发、分束及宽带单向激发

➢ 基于耦合腔效应高分辨的SPP器件

SPP全光调制—背景

在非对称单缝中利用光致双折射材料实现SPP调制

$$\Phi = 2k_{spp}L_{FP} + \varphi$$

1. 腔效应,对折射率改变更敏感
 2. 激发和调制集成在一起
 3. 易于在芯片上集成

Chen et al. Nano Letters 11, 2933–2937 (2011).

激发效率随波长变化(实验和模拟曲线)

激发效率随泵浦光强变化曲线

$$\lambda = 770 \text{ nm}$$

光栅处SPPs的散射光强分布 调制深度为52% 上面的结构参数的设计是为了得到最大的绝对调制深 度,为了得到更高的开关比,可使SPPs完全相干相消。

光栅处SPPs散射光强分布, $\lambda = 780 \text{ nm}, > 20 \text{ dB}$

小结

1、利用FP腔效应, SPPs对折射率的改变更敏感。

2、激发和调制集成到一起了,器件更紧凑。

3、在金属表面实现SPPs全光控制,易于和其他器 件集成。

4、实验上,在器件横向尺寸为2 um时,实现了 >20 dB的开关比,相位调制> π。

▶ 非对称单缝中SPP的全光调制

<u> 单向激发、分束及宽带单向激发</u>

▶ 基于耦合腔效应高分辨的SPP器件

三、单向激发、分束及宽带单向激发—背景

引入非对称系统

Nat. Phys. 3, 324 (2007)

Appl. Phys. Lett. 92, 101501 (2008)

Nano Lett. 9, 327 (2009)

3.1 利用单个非对称纳米狭缝实现SPP单向激发

Chen et al. Appl. Phys. Lett. 97, 041113 (2010)

实验验证

样品SEM图和CCD采集到的两边 光栅处的SPP散射强度 左右两边SPPs强度比值随波 长变化关系

非对称单缝横向尺度**370nm**,SPP消光比约30,效 率是对称单缝的1.8倍,是目前最小的单向SPP源。

3.2 SPP分束

Opt. Express 16, 19091 (2008)

Appl. Phys. Lett. 90, 161130 (2007)

利用准柱面波对总场的调制实现SPP分束

Chen et al. J. Appl. Phys. **109**, 073102 (2011)

实验验证

样品SEM图和实验采集的CCD图 两边SPP强度比值随波长变化

非对称单缝横向尺度800nm,波长740 nm和830 nm分束,消光 比分别为30和12。首次发现**准柱面波对总场的调制效应**。

3.3 宽带单向SPP激发

深槽非对称纳米单缝结构和样品SEM图

缝宽:190 nm, 槽深:140 nm, 腔长:865 nm, 折射率:1.5

Chen et al. Appl. Phys. Lett. (Submitted)

不同入射波长下实验采集的CCD图

激发效率随波长的变化

非对称单缝横向尺度865nm,单向激发谱宽>100 nm,消光 比> 11 dB。

SPP激发效率随腔长变化

激发效率随波长的变化

非对称单缝横向尺度865nm,单向激发谱宽>370 nm,消光 比> 13 dB。

▶ 非对称单缝中SPP的全光调制

▶ 单向激发、分束及宽带单向激发

➢ 基于耦合腔效应高分辨的SPP器件

四、基于耦合腔效应高分辨的SPP器件—_{背景}

1、具有强束缚,可到深亚波长尺寸 2、相对较长的传播距离:~10 um Phys. Rev. **182**, 539 (1969)

PRL 105, 116804 (2010)

Ring resonator Opt. Express 17, 24096 (2009)

Opt. Express **17**, 24096 (2009)

4.1 耦合腔中的非对称谱

耦合腔结构示意图

散射理论给出的解析模型:

Chen et al. Opt. Lett. (Submitted)

有限元模拟结果和解析模型结果

小结:

- 1、FP腔内部的腔与Stub腔的耦合导致非对称谱的出现 2、这两个内部腔是独立存在的,为器件的设计提供更多 的选择。
- 3、为了得到相同的开关比(0% to 61%),非对称谱只需要 移动30 nm,而对称谱要移动110 nm。
- 4、当谱移动相同时($\Delta \lambda = 30 \text{ nm}$),非对称谱的开关比是 对称谱的7倍。
- 5、对提高器件的波长分辨率、提高生物传感的灵敏度, 降低开关的阈值功率具有重要的意义。

4.2 高分辨率的Y分束器

$$y = d_y / 2 \times [x / L_b - \sin(2\pi x / L_b) / (2\pi)]$$

单个FP腔的透过谱

洛伦兹线型的谱宽:

 $\Delta \lambda_{\rm FWHM} = 110 \text{ nm}$

Chen et al. Opt. Express (to be submitted)

 $\Delta \lambda = 15 \text{ nm}$

 $\lambda = 1001 \,\mathrm{nm}$

 $\lambda = 1016 \text{ nm}$

散射理论给出的解析模型:

$$t_{\text{all}} = \frac{1}{T_{\text{all},22}} = \frac{i(\omega - \omega_0)\sqrt{1 - r^2}}{(\omega - \omega_0 + i\delta)\exp(-i\varphi) - i\delta r\exp(i\varphi)}$$

4.3 高分辨率的波长解调器

1×2 波长解调器

透过率随两个通道间距的变化

 $\Delta \lambda = 30 \ nm$

透过率随波长的变化

调节参数可使分辨率更高: 1×2 波长解调器

1×3 波长解调器

▶ 背景介绍

> 非对称单缝中SPP的全光调制

▶ 单向激发、分束及宽带单向激发

➢ 基于耦合腔效应高分辨的SPP器件

五、总结

基于非对称单缝,实现了SPPs的全光调制。器件的横向尺寸只有2 um,开关比>20 dB,相位调制
 π。并且易于和其他SPP器件集成。

✓ 基于非对称纳米单缝,有效地实现了SPP单向激发和SPP分束,横向尺寸分别只有370 nm和800 nm。

✓ 准柱面波对总场的调制为超紧凑SPPs器件的设计 提供了更多的可能性。

✓利用介质膜覆盖的非对称单缝实现了宽带单向SPP 激发。 在MIM波导中,利用谐振腔的耦合效应,使透过谱出现了陡的非对称线型,可极大地提高器件的波长分辨率。基于散射理论,分析了这种线型的形成机理。
 利用谐振腔的耦合效应,在Y分支中实现了高分辨的波长分束器。波长分辨率远远小于单个谐振腔的谱宽。

✓利用谐振腔的耦合效应,在MIM波导中实现了高分辨的SPPs波长解调器。波长分辨率远远小于单个谐振腔的谱宽。

论文发表

- 1. Jianjun Chen, Zhi Li, Song Yue, and Qihuang Gong. Nano Letters, 11, 2933–2937 (2011).
- **2. Jianjun Chen**, Zhi Li, Song Yue, and Qihuang Gong. <u>Appl. Phys. Lett. **97**</u>, 041113 (2010). IF: 3.554.
- **3. Jianjun Chen**, Zhi Li, Jia Li, and Qihuang Gong. Opt. Express 19, 9976-9985 (2011). IF: 3.278.
- **4. Jianjun Chen,** Zhi Li, Song Yue, and Qihuang Gong. Opt. Express, **17**, 23603 (2009). IF: 3.278.
- **5. Jianjun Chen**, Zhi Li, Song Yue, and Qihuang Gong. J. Appl. Phys. **109**, 073102 (2011). IF: 2.019.
- 6. Chen Jian-jun, Li Zhi, and Gong Qi-huang. Chin. Phys. B, 18, 3535 (2009). IF: 1.293.
- **7. Chen JJ**, Li Z, Zhang JS, and Gong QH. <u>ACTA PHYSICA SINICA</u>, **57**, 5893 (2008). IF: 1.003.

- 8. Song Yue, Zhi Li, **Jianjun Chen**, and Qihuang Gong. <u>Appl. Phys. Lett. **98**</u>, 161101 (2011). IF: 3.554.
- 9. Xiaofei Wu, Jiasen Zhang, Jianjun Chen, Chenglong Zhao, and Qihuang Gong. <u>Opt. Lett. **34**</u>, 392 (2009). IF: 3.059.
- 10. Zhi Li, Song Yue, **Jianjun Chen**, and Qihuang Gong. Opt. Express **18**, 14232 (2010). IF: 3.278.
- 11. YUE Song, LI Zhi, CHEN Jian-Jun, and GONG Qi-Huang.

Chin. Phys. Lett. 27, 027303 (2010). IF: 0.972.

投稿文章

- 12. Jianjun Chen, Zhi Li, Ming Lei, Song Yue, Jinghua Xiao, and Qihuang Gong. <u>Appl. Phys. Lett.</u> (submitted).
- 13. Jianjun Chen, Zhi Li, Xiuli Fu, Ming Lei, Li Yu, Jinghua Xiao, and Qihuang Gong. Opt. Lett. (submitted).
- 14. Jianjun Chen, Zhi Li, Ming Lei, Jinghua Xiao, and Qihuang Gong. Opt. Express (to be submitted).

请批评指正,谢谢!