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Abstract 

In recent years, the development of artificial intelligence has enabled some disruptive innovations by changing the 

way research is conducted. More specifically, in computer science, a new way of developing algorithms has 
emerged, based on machine learning techniques. The core idea is to train the program on many cases to teach the 

algorithms and then use them with new configurations. 

In any industrial process, optimizing the operating conditions can be a heavy trial-and-error work. Traditional 

optimization methods to find them can be very time consuming, so a machine learning approach can be useful to 

solve such inverse problems. This article shows how to implement an inverse problem solving strategy using 

COMSOL Multiphysics® and Python machine learning tools through a practical use case: continuous inkjet 

technology and viscosity deduction by droplet shape detection. 

In the field of industrial marking, continuous inkjet technology is based on high-speed emission of ink droplets. 

The shape of the emitted droplets is a combination of ink properties and stimulation operating point and has a 

direct impact on the printing quality. This article explores the role of viscosity by simulating droplet shape for 

multiple viscosities using COMSOL Multiphysics® (forward problem) and using machine learning techniques to 
infer viscosity from droplet shape (inverse problem). This use case illustrates how to set up the main stages of a 

machine learning inverse problem solving strategy: collecting data, selecting and training a model, testing the 

model and improving its predictive capabilities. The flexibility of COMSOL Multiphysics® makes it easy to 

interface with Python machine learning tools to efficiently produce valuable results. 

Keywords: Artificial Intelligence (AI), Machine Learning (ML), inverse problem, CFD, two-phase flow, 

continuous inkjet printing.

1 Introduction 

In 2024, it seems crucial to be able to couple 

COMSOL with AI/ML techniques in order to 

investigate new possibilities and to create efficiently 

disruptive new technologies. To explore this 

possibility, we decided to apply it to one of our main 

areas of work in recent years: the modeling of 

continuous inkjet printing (CIJ) [1] [2]. More 

specifically, we would like to assess if the shape of 

generated droplets could give some indication about 

the characteristics of the ink. 

Indeed, from an industrial point of view, one 

challenge of the CIJ technology is to be able to print 
as fast as possible while maintaining a sufficient 

printing quality. Droplet generation is the first 

printing step, and all defects generated at this stage 

may dramatically impact the rest of the printing 

process. Controlling the shape of the generated 

droplets is of prime importance, and the technical 

challenge is to find an operating point capable to 

produce the optimal shape. 

This article proposes a generic numerical workflow 

to couple and use COMSOL with Python AI/ML 

tools. 

2 Numerical Workflow 

Problem Statement: the Use-Case 

In CIJ printing, the shape of the droplets produced 

has a direct impact on print quality. In fact, there is 

an optimum droplet shape. Many physical 

parameters in the droplet generation process may 

impact the shape of the droplets: the geometry of the 

nozzle, the ink properties, and the operating point. 

To ensure a certain level of printing quality, 

optimizing these parameters becomes necessary, and 
it can be a heavy trial-and-error work, even purely 

numerically. 

In previous works, we developed a numerical model 

in COMSOL Multiphysics® to simulate the inkjet 

breakup process from all these parameters [1]. In the 

following text, simulating this process is called 

solving the direct problem. Optimizing the 

parameters then becomes solving an inverse 
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problem, i.e. the desired droplet shape is an input, 

and the values of the parameters generating this 

shape are the output. The ambition of this work is to 

use Artificial Intelligence (AI)/Machine Learning 

(ML) techniques to solve this inverse problem. 

One of the many parameters to optimize is the ink 

viscosity, which can physically be controlled by 
varying the ink composition and/or the ink 

temperature. This article focuses on building a 

numerical model capable to predict the value of the 

ink viscosity from a given droplet shape. 

Direct Problem: Simulating the Inkjet Breakup 

The inkjet breakup process is simulated using the 

2D-axysymetric diphasic CFD model developed in 

[1]. This model represents the ink flow inside a 

droplet generator, composed of a tank and a nozzle, 

and the free-surface flow of ink in the surrounding 

air. Between the tank and the air, there is a positive 

pressure drop in the ink, so that it flows only from 
the tank to the air. This pressure drop oscillates, and 

this perturbation propagates along the ink jet, which 

breaks at some point thanks to the well-known 

Rayleigh-Plateau instability. The ink is considered 

as a newtonian and incompressible fluid. Given a 

periodic pressure stimulation, the numerical model 

computes the periodic velocity field and phase field 

of ink and air inside and downstream of the droplet 

generator. 

The inputs of this numerical model are the droplet 

generator geometry (tank and nozzle dimensions), 
the ink properties (density, viscosity, and ink/air 

surface tension), and the operating point (mean flow 

rate of the ink, perturbation frequency and 

amplitude). 

In the context of this work, the output of this 

numerical model is the droplet shape at break. 

Physically, the jet is in fact separated in two parts: 

the continuous one (the jet) and the discontinuous 

one (the droplets). At the exact instant when the 

length of the continuous part of the jet suddenly 

decreases, it means that a droplet has just formed at 
its end and is breaking away from the jet. The shape 

of the newly formed droplet at this exact instant 

defines what is called the droplet shape at break. In 

the model, this shape may be recognized from a 2D 

or 3D representation of one isolevel of the phase 

field variable. To simplify its representation, this 

shape is represented as a point cloud ��� , ������	 , 

where �� is the height coordinate and �� is the local 

radius in the cylindrical coordinate system along the 
jet axis. This point cloud can be implemented in 

COMSOL using projection operators, to compute 

the radius of the droplet at each height, and 

represented in a 1D plot. This point cloud can then 

be exported as a TXT file, which forms the output of 

this numerical model. 

To avoid any confusion with the upcoming models, 

this numerical model is called in this paper the direct 

problem. 

Data Generation 

In this work, supervised Machine Learning 

techniques are used, which consists in finding and 

optimizing a model, from known inputs → outputs. 

The goal of this work is to build the inverse of the 

function giving the generated droplet shape in 

function of the ink viscosity, provided that all other 

parameters of the inkjet breakup process remain the 

same. Then, given a droplet generator geometry, the 

density and the ink/air surface tension, and the 

operating point, the direct problem is solved for 

multiple viscosity values. For each viscosity, a TXT 

file containing the point cloud representing the 

droplet shape at break is produced. 

The dataset used to optimize a model solving the 
inverse problem droplet shape at break to viscosity 

can mathematically represented as the set: 

��
� = ���� , ������
	� → ��    for � = 1, … , �� (1) 

where �� designates the value of viscosity, and � is 

the number of values of viscosity considered. 

Data Pre-Processing 

From here, all the upcoming operations are 

performed in a Python script. The output data of the 

direct problem have a disadvantage: the droplet 

shapes may not be represented on exactly the same 

height grid, and cannot be directly used in an AI/ML 

workflow. This issue is solved by defining a unique 

height grid �������	  of size �, and interpolating each 

droplet on this grid, forming the pre-processed 

dataset: 

� = ��������	 → ��    for � = 1, … , ��. (2) 

Development of the Machine Learning Model 

A supervised Machine Learning model is a 

mathematical function inputs → outputs depending 

on parameters that have to be optimized. Multiple 

models may explain the relationship between the 

known inputs and outputs, but only a few are capable 

to extrapolate to unseen data. 

Usually, the dataset is divided in two groups: a 

training set ���
�  and a test set ��!"�: 

� = ���
� ∪ ��!"� ,     ���
� ∩ ��!"� = ∅. (3) 

The training set is used to optimize the model 

provided a certain error metric, and the test set is 

helpful to estimate the extrapolation capacities of the 

model. A usual error metric is the least squares 

metric: 
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&'��, ℳ� = )�ℳ�*�� − ,��-
�

 (4) 

where � = {*� → ,�  for / = 1 … �} designates the 

inputs → outputs dataset, and ℳ designates the 

model. When this metric has a high value over the 

training set, the model faces the underfitting issue: it 

is incapable to predict outputs from known inputs. 

When this metric has a low value over the train set, 
but a high value over the test set, the model faces the 

overfitting issue: the model predicts perfectly 

outputs from known inputs, but is unable to 

extrapolate with new inputs. 

A good prediction model does not encounter these 

issues, i.e. the error metric is low for both train and 

test sets. For that, a simple enough model must be 

chosen. The degree of complexity of a model is often 

measured by the number of degrees of freedom, i.e. 

the number of parameters of the model. 

In this work, a linear model has been chosen to 

explain the relationship between the droplet shape at 
break, and the viscosity. Mathematically, the 

viscosity prediction  �̂ is expressed as a linear 

combination of the radii of the droplet shape at break 
�������	 : 

�̂ = ℳ2��� , … , �	� = 34 + ) 3� ⋅ ��

	

���
 (5) 

where 3 = �3�����	7� are the parameters to optimize. 

Once the model is selected, the next step consists in 

training and refining the model. Training is the 

action of optimizing the model parameters to best fit 

the data in the training set, in the sense of the error 

metric. Mathematically, the optimization problem to 

solve writes: 

min ;    &'����
� , ℳ2�. (6) 

High values of � (/. <. the discretization of the 

droplet shapes is fine) makes the optimization 

problem Eq. 6 with model Eq. 5 ill-posed: there are 
more degrees of freedom to solve than “equations”. 

A common way to solve this issue is to use 

regularization techniques, e.g. the LASSO 

regularization, consisting in adding another term in 

the objective function of Eq. 6 aiming to eliminate 

some degrees of freedom: 

min;    &'����
� , ℳ2� + = ) |3�|
	7�

���
 (7) 

where = is a coefficient controlling the regularization 

strength. The optimization problem of Eq. 7 with 

model Eq. 5 is well-posed. When = → 0, solving Eq. 
7 leads to one of the many solutions of Eq. 6, and 

certainly to overfitting. When = → ∞, the solution 

becomes 3� = 0, which leads with high probability 

to underfitting. But a good model may emerge by 

choosing a value of = between these boundaries. 

A good value of = may be chosen by minimizing the 

prediction error over the test set, i.e.: 

minA    &'���!"�, ℳ2�B��. (8) 

In practice, the optimization problem Eq. 7 can be 

solved numerically in our Python script by using the 

Lasso model of the scikit-learn module. Then, 

multiple values of = can be evaluated to solve the 

optimization problem Eq. 8 and find a value =∗ that 

may prevent both overfitting and underfitting issues. 

By solving Eq. 7 with this optimal value =∗, the 

model predicting the viscosity from the droplet 

shape at break is obtained. 

3 Results and Discussion 

Dataset, Training Set, Test Set 

The whole dataset, training set and test set are 

illustrated in Figure 1. 

 

Figure 1. Dataset: droplets shapes at break simulated for 

multiple values of viscosities (in cP). Viscosities in bold 

indicates the values constituting the training set. The other 

values indicate the test set. 
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Performance of the Trained Models 

The performance of the models Eq. 5 trained using 

Lasso regularization coefficients = = 10DE, 10D�, 
10F are illustrated in Figure 2, Figure 3, and Figure 

4. In these graphs, each point represents the expected 

and the predicted viscosity for the data coming from 

both the training and the test sets. The grey dashed 

line represents the equality between the expectation 

and the prediction: it represents the perfect model. 

For good models, all the points must be close to this 

line. 

For = = 10DE (Figure 2), the viscosity is perfectly 
predicted in the training set, while the viscosities of 

the test set are very badly predicted. This is typical 

of overfitting. For = = 10F (Figure 4), bad 

predictions of the viscosities are obtained on both the 

training set and the test set. This is typical of 

underfitting. To explain these results, it must be 

recalled that one of the specificities of the LASSO 

regularization is to nullify a subset of the variables 

to optimize, as large as =. With = = 10DE (Figure 2), 

the regularization is too weak and almost all the � 

coefficients (� = 100 in this experiment) are non-

zero, meaning that, for this model, the viscosity may 

be explained by almost all radii defining the droplet 

shape. With = = 10F (Figure 4), only one coefficient 

(the mean of the training viscosities) is non-zero: the 

model is too simple to explain the viscosity. For = =
10� (Figure 3), good predictions are globally made 

for both the training and the test set. In that case, 7 

coefficients of the model are non-zero: the LASSO 

regularization selected the most relevant radii that 

explain the viscosity. 

Concerning the model obtained with = = 10D�, one 

particular case of “bad prediction” is the prediction 

of �̂ = 4.2 cP for the droplet shape obtained with 

� = 2.5 cP. In this case, it has to be noted that the 

droplet shape obtained with � = 2.5 cP is very close 

to the one obtained with � = 4 cP (Figure 1). The 

prediction error is then not completely surprising. In 

fact, inverse problems have almost never a unique 

solution. For a physical process, it means that it is 

possible to produce the same output with different 

inputs. In our case, this is not a problem. Imagine that 

the optimal droplet shape is the one obtained with 

� = 2.5 cP (Figure 1). With this droplet shape, the 

model predicts that a viscosity �̂ = 4.2 cP can 

produce this shape, which is more or less the case. 

These results are very promising, so that the next 

step of this work concerns the prediction of more 

process inputs, one-by-one. 

 

Figure 2. Performance of the model with a regularization 

coefficient = = 10DE. 

 

 

Figure 3. Performance of the model with a regularization 

coefficient = = 10D�. 

 

 

Figure 4. Performance of the model with a regularization 

coefficient = = 10F. 
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4 Conclusions 

Having the possibility to couple COMSOL with 

AI/ML tools is necessary to investigate new 

directions and push the optimization of industrial 

processes even further. 

This article proposed a numerical workflow to 

achieve such coupling on an industrial inverse 

problem: determining the value of an ink property 

allowing to generate a specific droplet shape in the 

context of the CIJ technology. This issue has been 

addressed by detailing how to generate (in 

COMSOL) and pre-process data, and how to choose, 

train, and refine a prediction model (in Python). The 

communication between both tools is facilitated by 

the advanced post-processing tools and the export 

TXT feature within COMSOL. The results are very 
promising as a very relevant and accurate prediction 

model has emerged from this work. The coupling of 

COMSOL with AI/ML tools is then shown to be 

possible and to be driving major scientific advances 

in every industry. 
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