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Thermo-Rheological Modelling
of the Yellowstone Caldera: 
Insights into Volcanic Processes 
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The study began with Curie surface mapping and the set-up of 
magmatic reservoir geometry. Aeromagnetic data was used to 
determine the Curie surface at depth, corresponding to a 
temperature of 573°C. This information was combined with 
geological [2] and geophysical (seismic tomography, [3]) data to 
construct the model geometry. Subsequently, two 3D conductive 
thermal models were developed, investigating different scenarios 
characterized by: (1) homogeneous upper crustal thermal 
conductivity and an additional ‘additional’ heat source; (2) 
heterogeneous thermal conductivity. 
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There is growing interest among geoscientists in modelling 
the thermal state of volcanic and geothermal regions. The 
Yellowstone Caldera, the world’s most famous supervolcano, 
represents a perfect laboratory for testing effective modelling 
approaches in such tectono-magmatic environments.

Introduction & Goals

Methodology

For both physical scenarios, the thermal parameters were 
optimized to determine the best finite element (FE) model 
configuration. Our thermal analysis demonstrated that, in order to 
align with both the regional surface heat flow (SHF) estimate [4] 
and the minimum Root Mean Square Error (RMSE), the optimal 
setup includes additional heat production diffused within the 
upper crust. This could be due to the presence of smaller-scale 
magmatic bodies in the upper crust that are unresolved by 
tomography [3]. Finally, a comprehensive rheological model of the 
studied crustal section was developed, correlating the model with 
the seismicity cut-off. A minimum strain rate of 1E−8 s−1 was 
applied to match the observed seismicity distribution (1974–2024).

Results

FIGURE 2. - a) Composite picture illustrating the Optimization Process – Scenario 
1; b) Modelled SHF for Scenario 1 and c) Scenario 2; d) 3D Temperature 
distribution and the associated e) 3D rheological model.

The Yellowstone hotspot is responsible for a series of 
volcanic eruptions over millions of years, creating the 
Yellowstone Caldera and other volcanic features [1]. Our 
goal is to investigate the thermo-rheological state of 
Yellowstone crust, focusing on the interactions between 
thermal dynamics and crustal mechanics, which are 
essential for evaluating volcanic activity, geothermal 
potential, and the region's long-term stability. 
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FIGURE 1. a) Modelling workflow; b) 3D View of the magmatic system [3] and c) 
FE geometry domains; d) Table of physical parameters and constitutive laws.
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Curie Surface Mapping & Geometry set-up
• From Aeromagnetic data to Curie surface at depth

• Integration of geological and geophysical information for 
constructing model geometry

3D Conductive Thermal Modelling
Given the large scale of the study area, a conductive 

approximation is appropriate, as it accurately represents the 
dominant heat transfer process over vast regions

Thermal Parameters Optimization Process
Iterative Approach aimed at minimize the residuals between 

MODELLED and MEASURED data

Rheological Model
• Comprehensive modelling of brittle-ductile transition

• Correlation with earthquake distribution (seismicity cut-off)

MODELLING WORKFLOW
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