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Temperature field simulation of the Bridgman process as a
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Motivation

the Bridgman process

» Thin-walled blades are prerequisite for highly efficient turbine engines

» The hollow thin-walled blades are cast from high temperature alloys using

» Temperature gradient and solidification rate determine the formation of the
microstructure and therefore the material properties

» Aim: Determine the influence of process parameters and geometry on
solidification conditions to predict the microstructures
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A time dependent variation of an ‘ N
externally applied temperature field is T(z,t) =Tyt (z—v *t)
used to simulate the withdrawal process \ J
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Simulation setup

» Simplified model 1s used to determine
influence of wall thickness

» Heat transfer on sample surface is by
radiation only (vacuum process)

radiation heating

» Heat transfer in solids (conduction) was
used for the shell mould and heat
transfer 1 liquids (conduction and
convection) was used for the sample

» A volumetric force was used to prevent
convection 1n the solidified areas of the

radiation cooling

cooling via chill-plate sample

» CMSX4 and CM186LC were used for
the sample [3], Al,0; for the mould [4]
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withdrawal rate (left) and wall thickness (right)
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Temperature gradient in the center of the thin-walled structure as a function of
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CMI186LC
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Withdrawal rate in mm/min

0.5 mm/min to 10.0 mm/min

0.4 mm to 2.0 mm

and different wall thicknesses (right) of CMSX4

Wall thickness in mm

» Temperature gradient decreases from 5.4 K/mm to 3.6 K/mm (CMSX4) and
from 5.2 K/mm to 4.4 K/mm (CMI186LC) as withdrawal rate increases from

» Temperature gradient decreases from 4.8 K/mm to 4.5 K/mm (CMSX4) and
from 4.9 K/mm to 4.6 K/mm (CMI186LC) as wall thickness increases from

Convective heat flow 1n the thin-walled area for different withdrawal rates (left)
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varied parameter wall thickness in mm withdrawal rate in mm/min
withdrawal rate 2.0 0.5,1.0,2.0,3.0,5.0, 10.0 - 0.8
Kwall thickness 0.4,0.8,1.2,2.0 3.0 y | mm/min 3 mm/min
2.0 mm 1.2 mm
/ \ 3 mm/min 3 mm/min
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Summary

» CMSX4 and CM186LC show similar behavior when the parameters are varied

» Both withdrawal rate and geometry affect the solidification conditions in the Bridgman
process, although the influence of the withdrawal rate i1s greater

» The reason for the decrease in the temperature gradient is an increase in convection with an
increase 1n the withdrawal rate and wall thickness

Outlook

Using the simulated temperature fields, it 1s possible to

predict the microstructure formed during solidification.
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