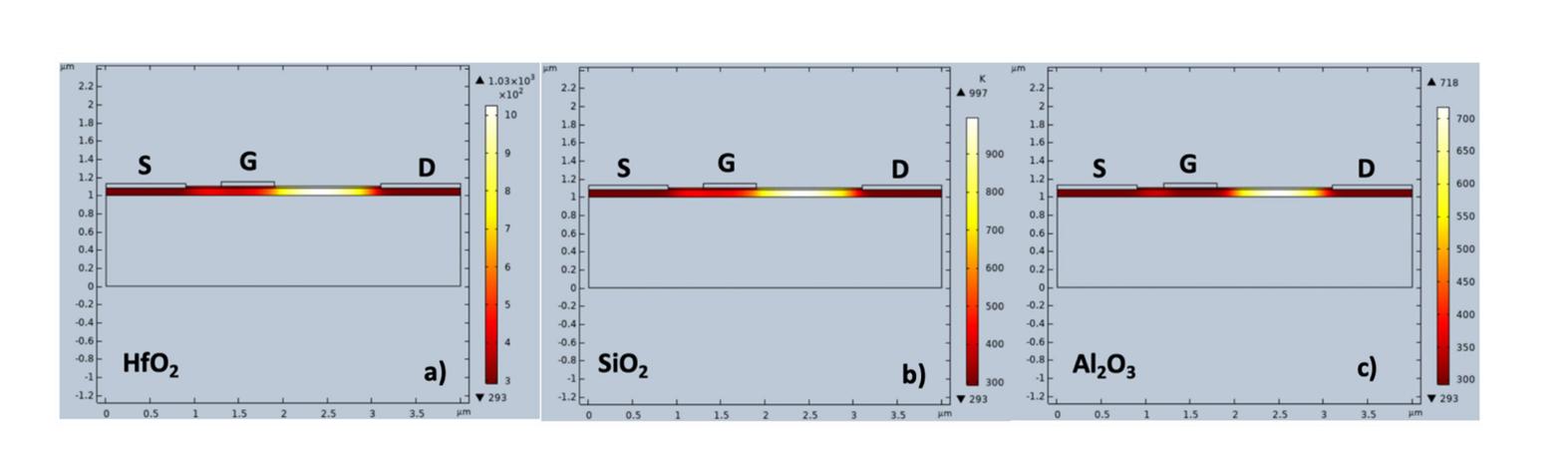


Dielectric Influence on a 2D Lateral Gallium Oxide (Ga₂O₃) MOSFET using COMSOL Multiphysics

Study the electrical and thermal response of a 2D lateral Gallium Oxide MOSFET using different gate dielectric oxide materials to investigate the effect of dielectrics on dissipating heat in the Ga_2O_3 layer.

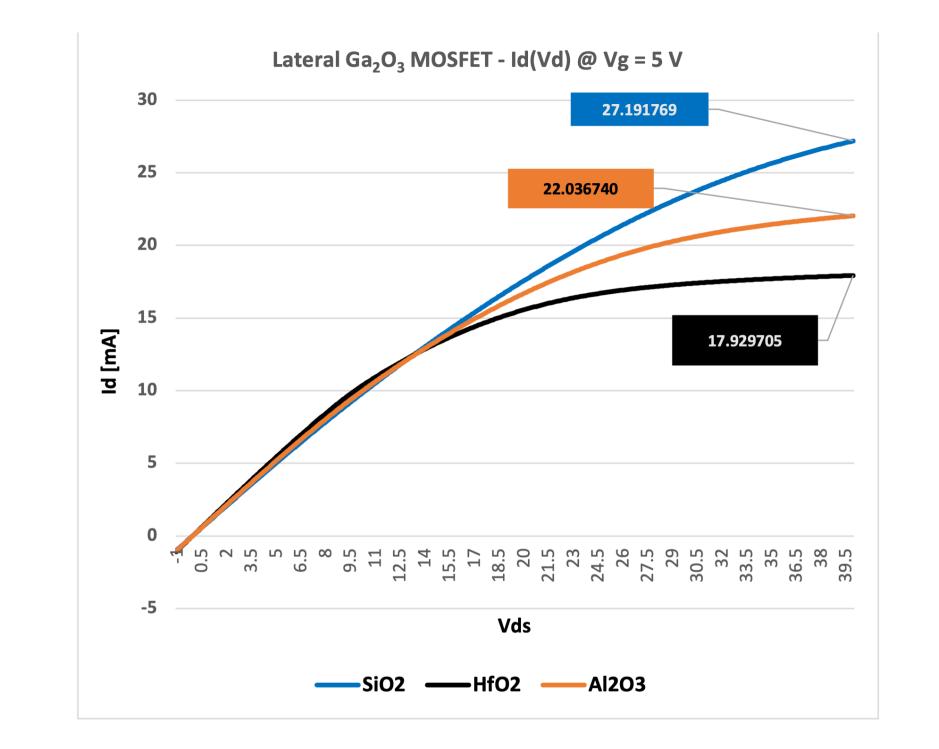

J. M. Bisignano¹, A. Bhalla², R. Guo³

1. University of Texas at San Antonio - Multifunctional Electronic Materials & Devices

Abstract

Gallium Oxide (Ga_2O_3) is an emerging wide bandgap transparent oxide semiconductor that has garnered attention for power electronic applications because of its large 4.8 eV bandgap and large critical electrical field strength of 8 MV/cm ^[1]. However, due to Ga_2O_3 's poor thermal conductivity k = 27 W/mK the self-heating effects can severely limit device performance and reliability. This work studies the electrical

and thermal response of a 2D lateral Ga_2O_3 MOSFET using different gate dielectric oxide materials to investigate the effect of dielectrics on dissipating heat in the Ga_2O_3 layer. The three gate dielectrics considered are Silicon Oxide (SiO₂), Aluminum Oxide (Al₂O₃), and Hafnium Oxide (HfO₂). The results show that Al₂O₃ dissipates approximately **27%** to **29%** more heat compared to SiO₂ and HfO₂, respectively.


Methodology

A 2D Lateral MOSFET model was constructed using an **80 nm** thick Ga_2O_3 layer for the semiconductor layer. In addition, a **20 nm** oxide layer is used that alternates between SiO₂, HfO₂, and Al₂O₃. Finally, the source, drain and gate of the device are **50 nm** ideal ohmic Au layers.

FIGURE 1: Phonon generation plots of the 2D Lateral Ga_2O_3 MOSFET for three dielectrics considered: **a)** HfO₂, **b)** SiO₂, and **c)** Al_2O_3 Charged carriers and phonon generation are modeled in COMSOL Multiphysics using the **Semiconductor** and **Heat Transfer in Solids modules**. Terminals are defined at the metal contacts to apply a bias to the device while the heat source is defined as the semiconductor layer. Convective heat flux boundaries are applied to the metal contacts to imitate heat generation from device operation.

Results

The gate of this device was held at a constant 5 V bias while the drain was swept from -1 V to 12 V with a 0.1 V step. The source was grounded to operate this device in enhancement mode. The results show that Al_2O_3 helps dissipate heat more effectively compared to SiO₂ and HfO₂ as a gate dielectric.

A peak temperature of **718.2 K** was observed for Al_2O_3 as a gate dielectric, while SiO₂ had a peak temperature of **996.6 K** and **1025.4 K** for HfO₂. Al_2O_3 shows a **27.94%** and **29.96%** reduction in temperature compared to SiO₂ and HfO₂ respectively under the same operating conditions.

FIGURE 2: Comparison of output drain current **Id(Vd)** of 2D Lateral Ga_2O_3 MOSFET for the three dielectrics HfO₂, SiO₂, and Al₂O₃ evaluated

REFERENCES

- 1. J. Y. Tsao *et al.* S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, "Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges," *Adv. Electron. Mater.*, vol. 4, no. 1, p. 1600501, Jan. 2018, doi: 10.1002/aelm.201600501.
- M. Higashiwaki, "β-Ga2O3 material properties, growth technologies, and devices: a review," AAPPS Bull., vol. 32, no. 1, p. 3, Jan. 2022, doi: 10.1007/s43673-021-00033-0.
- 3. B. R. Tak *et al.* S. Kumar, A. K. Kapoor, D. Wang, X. Li, H. Sun, R. Sing, "Recent advances in the growth of gallium oxide thin films employing various growth techniques—a review," *J. Phys. Appl. Phys.*, vol. 54, no. 45, p. 453002, Nov. 2021, doi: 10.1088/1361-6463/ac1af2.
- N. P. Sepelak, "Demonstration of High-Temperature Operation of Beta-Gallium Demonstration of High-Temperature Operation of Beta-Gallium Oxide (β-Ga2O3) Metal-Oxide-Semiconductor Field Effect Oxide (-Ga2O3) Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET) with Electrostatic Model in COMSOL".
- 5. P. Kachhawa et al., N. Chaturvedi, "High-k Dielectric Influence on Recessed-Gate Gallium Oxide MOSFETs," in Micro and Nanoelectronics Devices, Circuits and Systems. Singapore: Springer Nature Singapore, 2023, pp. 21–29.

Excerpt from the Proceedings of the COMSOL Conference 2024 Boston