Elastoplastic Deformation in a Wedge-Shaped Plate Caused by a Subducting Seamount

Min Ding^{1,2}, Jian Lin¹

¹Dept. Of Geology and Geophysics, Woods Hole Oceanographic Institution ²Dept. of Earth, Planetary, and Atmospheric Sciences, Massachusetts Institute of Technology

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Observation of Subducting Topographic Features

Topography

Seismic reflection

Key Science Questions

- What is the effect of the subduction of a seamount on deformation and faulting of the upper plate?
- How to parameterize the seamount geometry, upper plate rheology, and induced faulting characteristics?

COMSOL Model Set-up

Expected Fractural Network

Seamount Shape

Wang and Bilek [2011]

Model Set-up

- $V_0 = 5 \text{ cm/yr}$
- Conical Seamount shape
- Quasistatic timedependent deformation

Tested Parameters

- Angle of internal friction: Φ
- Dipping angle of the subducting slab: θ
- Distance from the left side of the seamount base to the ground surface: D

Output

- Surface displacement: U_x, U_z
- Slip lines: α, β-lines
- Time durations of seamount movement required for a sequence of faults to cut through the upper plate: T₁ to T₄
 - Dipping angles of the through-going faults: α_1 to α_4

Von Mises vs. Mohr-Coulomb Failure Criterion

Von Mises

- Symmetry failure zones
- Normal and thrust faults appear at the same time

Mohr-Coulomb

- Asymmetry
- Normal faults appear prior to thrust faults

Influence of Seamount Depth, D, and Dipping Angle, θ

 Longer durations of seamount movement are required for faults to cut through plates of deeper seamounts greater dipping angles.

Conclusions

- 1. A pair of conjugate normal faults first appeared in the thinner part of the upper plate, followed by another pair of conjugate thrust faults in the thicker part of the plate.
- 2. The durations of the seamount movement required for faults to cut through the entire plate are longer for deeper seamounts, greater dipping angles of the plate, and for the Mohr-Coulomb than the Von Mises criterion.

Acknowledgements

We thank Mark Behn, Jean-Arthur Olive, Hongfeng Yang, Jeff McGuire, and Brian Tucholke at Woods Hole Oceanographic Institutin, and COMSOL Help Group and Srikanth Vaidianathan at COMSOL Inc. for help.