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Abstract: Atmospheric ice is a very complex
material with varying electrical properties due to
different polymorphs of ice itself. Also, if the
medium to be considered is snow, then density
becomes an additional parameter because it is a
mixture of three dielectrics water, ice and air.
The permittivity and loss tangent of naturally
occurring ice and snow shows lot of variation at
different conditions particularly temperature.
This paper is a comparative study of some
experimental results found from literature and
simulations of dielectric properties of ice and
snow in Comsol.
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1. Introduction

1.1 What is dielectric

A material is defined as ‘dielectric’ if it has
the ability to store energy when it is acted upon
by an electrical field. It is directly related with
the capacitance. This dielectric constant is also
called ‘permittivity’ which varies with input
frequency, surrounding temperature, field and
molecular orientation, type of mixture, pressure
and molecular structure of material. The
dielectric measurements can provide critical
design parameter information for many
electronic applications.

Following [1] we can define ‘C0’ as the
capacitance of free space and ‘C’ as the
capacitance of the material then ‘C0=0A/t’ and
‘C=C0r’ where ‘0=8.85x10-12 Fm-1’, ‘A’ is thecharging surface area and ‘t’ is the distancebetween the plates.  Now if we consider an ACsupplied voltage with a frequency ‘  ’ thenacross the dielectric material we have acharging current IC associated with thecapacitance and loss current IL associatedwith the loss/resistance of the dielectricmaterial (see fig. 1). Hence we can write,
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Where ‘G' is conductance. Now if we assumeG=C0 then,
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0 0r r rI j C V j j C V       (2)Where r=r-jr is the complex permittivitywhich is dependent upon the excitationfrequency. Here r represents the amount ofenergy from the electric field which is storedin the material and r represents how lossyor dissipative a material is to the externalelectric field. The loss factor includes theeffects of both dissipation and conductivity.Also the relative lossiness of the material isthe ratio
of energylost to the energy stored and is defined as‘dissipation factor.
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Figure 1. (a) Dielectric material as a plate capacitor,
(b) Argand diagram for dielectric constant

1.2 Water Molecule As A Dielectric Material

A water molecule is a nonlinear polar
molecule due to the electronegativity difference
of around 1.2 between the constituent elements
of H2O. It has many dielectric mechanisms
(atomic, electronic and dipolar) in different
frequency domains associated with a cutoff
frequency in each domain which appears as a
peak in r=r() (likewise D=D()) curve. It
has strong dipolar effects at low frequencies
particularly due to its orientation polarization
which are also indicated in the experimental
results of [2], [3], [4] and [5]. This dipolar
orientation is generally associated with the



relaxation1 phenomenon, whereas the electronic
and atomic polarization are associated with the
resonance phenomenon. In the frequency domain
characteristics the relaxation frequency ‘fc is
indicative of the relaxation time.

2. Mathematical relations and
experimental results to be compared/used
for determining dielectric properties of
ice

Ice as it exhibit dielectric variations can be
modeled by the Debye relations which appear in
the dielectric response as a function of
frequency. In fig. 2 there are some experimental
results which reflect the potential of dielectric
constant measurements in different frequency
spans for ice and snow at different temperatures
and different compositions respectively. The
Debye relations for pure ice (assumptions are :
single relaxation time, zero conductivity and
local field same as applied field) are given as,
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Where rs is the dielectric constant at zero
excitation frequency or dc value, r is the
dielectric constant at very high frequency. Few
experimental values for rs, r and 0 for pure ice
are given in tab. 1.

1 Relaxation time ‘0’ is a measure of the mobility of the
dipoles that exist in the material to reorient themselves.

It can be seen from fig. 2a and 2b that there are
two different types of plots. The smaller plots are
the Argand Diagram which forms a semi circle
by sweeping the excitation frequency.

(a)

(b)

Figure 2. (a) Dielectric constant variation as a function
of excitation frequency in pure ice at two temperatures
(I) and  (II) [3]. (b) Dielectric constant variation as a
function of excitation frequency for soft snow at  (I),
(II) and  (III) [3].

It is very important to mention that snow is a
mixture of three dielectric materials which are
air, water and ice. Soft snow is an special case of
snow which is a mixture of air and ice only.
Hence if the medium being considered is snow
then density is also important and this introduces
one other parameter which characterizes the
shape and orientation of the particles comprising

Table 1.  Experimental values of rs, r and 0 [4]

Author rs r 0

Smyth
Hiteock

74.60 3.00 05 0.10158( )1.846 10 Ce   

Wintsch 73.00 7.50 05 0.0906( )2.246 10 Ce   

Errara 77.20 3.00
05 0.090( )2.900 10 Ce   

Murphy 95.00 3.50
05 0.106( )1.85 10 Ce   



the mixture. For a mixture of dielectric material
we can use the Wiener relation which is given as,
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Where ‘m’ is the dielectric constant of the
mixture, ‘1’ and ‘2’ are the dielectric constants
of two materials and ‘’ is the proportion of the
total volume occupied by medium ‘1’ and u is
the Formzahl number, fig. 3. For more details on
the dielectric mixing formula reference can be
made to tab. 2 in reference [3].

Figure 3. Variation of ‘ u ’ with respect to the
direction of electric field [4]

Using eq. 5, the following formula is derived
when we substitute 1 = ice and 2 = air = 1,
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Where d is the real part and d is the
complex part of the dielectric constant of dry
snow.

In fig. 2b it is clearly visible that at f<104

there are some deviations in the dielectric
constant which are due to the conductivity of
H2O in the snow. These conductivities effects
are not dominant in pur ice because the
permittivity of pure ice is relatively very larger
than that of snow. If the DC conductivity ‘ ’ is
not negligibly small, the  will also contribute
to the imaginary part of the complex dielectric
constant [6]. The total dielectric constant will
then be mathematically represented as,
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Therefore by substituting eq. (10) into Debye
equation (eq. 4) we get,
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This conductivity is a also a function of
excitation frequency hence we have followed [7]
and used,

( ) (0) nA     (12)

Where (0) and A are assumed to be
empirical constants and  is the excitation
frequency. In tab. 2 there are some
experimental results found by [8] which are used
to compare/assume the conductivity values,

In the case of snow, the relaxation time also
deviates as all bodies in it are not identical in
size, and their orientations involve more than one
relaxation time, e.g. if we have ellipsoidal shape
of ice molecules, then friction coefficients of the
three axes are different, which leads to the
existence of three different relaxation times. In
this case, a distribution of relaxation times is
necessary to interpret the experimental data.
Fuoss and Kirkwood [9] have also proposed a
parameter  in the interval [0,1] to take into
account the distribution of relaxation times
empirically. For =1 we have the same Debye
equations, hence smaller  provides large
number of relaxation times. Their relation for r
is given as,

Table 2. Experimental Values Of Direct Current Electrical
Conductivities [8]

Material
Temp.
oC

Cond.
mho/m r

(c/s)
for
tan  = 1

Pure ice
-10
-40

10-7

3x10-9
95
105

20
0.5

Soft  snow
=0.13 g/cm3

-10
-40

10-9

3x10-11
4
4

4
0.1

Granular snow
=0.4 g/cm3

-10
-40

10-7

10-9
15
15

100
1
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Nevertheless the temperature is the most
important parameter which directly affect all
other parameters. It can be seen in tab. 1 that
different researchers have used relations for
determining the relaxation time 0 for ice. The
general relationship that can be formulated and is
given as,

H

kT
he  (14)

Where ‘ h ’ is a pre exponential factor and ‘ H ’

is the activation energy, ‘T ’ is the absolute
temperature and ‘ k ’ is the Boltzmann constant.
It is clearly reflected from fig.  2 that both parts
of the complex dielectric constant decrease with
increasing temperature and the loss peak shifts
towards higher temperatures, as can be seen.

3. Use of Comsol Multiphysics

This software is very versatile as it made the
study relatively easy. The ‘electrostatics’ module
was used for this study as the frequencies that we
were dealing were relatively small f<107 Hz.

A simple geometry of a new material ‘ice’
with varying dielectric properties, dependent on
temperature, conductivity and relaxation time
was introduced using the equations described in
the last section. Similarly another material dry
snow was taken into consideration which have
an additional parameter of density ‘’ and wet
snow with one another parameter wetness ‘W’
was taken into consideration. The geometry is
kept same for all of the above three materials
which is given in fig. 4 (units are in cm). The
boundary conditions are defined as the side 3 is
such that.

Side 3 = 9 Volts
Side 2 = 0 Volts (Ground)

Free triangular meshing was done to check the
application of dielectric equations on this model.
A frequency sweep from 0 Hz till 500 MHz,
temperature sweep from -10C till -150C and
density ratio of material 1 and material 2 defined

by  was swept from 0.1 till 0.9 was used during
the simulations.

Figure 4. Geometry and boundary conditions of
atmospheric ice model.

Figure 5. (a) Meshing of the model

4. Comsol Results

The results of Comsol are very impressive as
they are quite similar with the experimental
results of fig. 2. The argand diagram for pure ice
and relative permittivities vs omega at different
temperatures are given in fig. 6 and 7
respectively. Also the argand diagram and
relative permittivities of dry snow at different
density ratios are plotted in fig. 8 and 9.

Figure 6. Argand diagram for pure ice at -80C



Figure 7. Relative permittivity vs omega at different
freezing zones.

Figure 8. Argand diagram for snow at different density
ratios.

Figure 9. Relative permivities of snow at different
density ratios.

5. Conclusions

It is found from this numerical study that Debye
equations (eq. 4) forms a basis for the dielectric
based sensing technique for atmospheric icing at
different temperature. To introduce the variations
due to temperature eq. 14 is very useful which is
further supported by tab. 1. Also to model snow
is little tricky due to the mixture of dielectric
materials but the mixing formula eq. 5 is solved
to find eq. 6 which is then used to find the
variations in the dielectric properties of dry snow
at different density ratios. Fig. 6 and 7 is quite
similar with fig. 2a and fig. 8 and 9 matches with
fig. 2b. Although there are some variations
which are due to the conductivity eq. 12 which
also depend on temperature but still not validated
in these formulations.

6. Future Work

Modeling wet snow is much more difficult then
it is understood as it involves three dielectrics
water, ice and air. Although some mathematical
relations do exist for dry snow but for wet snow
even there are not enough mathematical study
which can be very interesting to formulate and to
justify numerically. Also in this paper
conductivity is assumed to be a function of
excitation frequency but it is not completely true
as it also depends on temperature. Hence to find
a conductivity relation as a function of
temperature and frequency and then to
numerically justify this can also be very
interesting.
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