

Investigation of Hydraulic Fracture Re-Orientation Effects in Tight Gas Reservoirs

B. Hagemann, J. Wegner, L. Ganzer

Milan, 11.10.2012

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

OUTLINE

- RE-FRACTURING CONCEPT IN TIGHT GAS RESERVOIRS
- IMPLEMENTATION IN COMSOL
- NUMERICAL SIMULATION
 - BASE CASE SIMULATION
 - IMPACT OF PERMEABILITY
- CONCLUSIONS

RE-FRACTURING CONCEPT IN TIGHT GAS RESERVOIRS

- Low matrix permeability in tight gas reservoirs
- Hydraulic fracturing required for economic production rates
- Production from the well and its initial fracture declines
- Re-fracturing required to accelerate recovery
- Field cases show different orientation of re-fracture
- Connection to a less depleted region in the reservoir

RE-FRACTURING CONCEPT IN TIGHT GAS RESERVOIRS

Concept of stress reversal during pressure depletion

RE-FRACTURING CONCEPT IN TIGHT GAS RESERVOIRS

- Is the re-fracture orientation predictable?
- How far does the re-fracture propagate into the perpendicular direction?
- What is the best time for re-fracturing?
- Which parameters influence the propagation?

Set up of numerical reservoir model in COMSOL Multiphysics

- -Coupling of fluid flow and geomechanics
- -Use of "Poroelasticity" physics interface

IMPLEMENTATION IN COMSOL – Geometry

B. Hagemann, J. Wegner, L. Ganzer

IMPLEMENTATION IN COMSOL – Initial and Boundary Conditions

IMPLEMENTATION IN COMSOL – Parameters

Class	Parameter	Value	Unit
Reservoir Rock	Permeability	0.01	mD
Reservoir Rock	Porosity	0.1	-
Reservoir Rock	Young's Modulus	2.75*10 ⁵	bar
Reservoir Rock	Poisson's Ratio	0.25	-
Reservoir Rock	Biot's Coefficient	0.7	-
Natural Gas	Relative Density	0.6	-
Natural Gas	Temperature	110	°C

NUMERICAL SIMULATION – Base Case Simulation

After one year

After five years

Elliptical shaped drainage area

Higher pressure gradient in y-direction in the vicinity of the wellbore

NUMERICAL SIMULATION – Base Case Simulation

Initial maximum principal stress direction

Maximum principle stress direction after five years

Elliptical shaped stress reversal region
Bypassing of stress lines around this region

NUMERICAL SIMULATION – Base Case Simulation

Maximum principle stress direction after five years

Pressure distribution after five years

Possible re-fracture propagation after five years
Attaining of less depleted reservoir region with about 200 bar

NUMERICAL SIMULATION – Impact of Permeability

Equal maximum dimension for all cases
Higher permeability effects shifting advanced in time
Lower permeability effects shifting delayed in time

CONCLUSIONS

- COMSOL Multiphysics enables the coupled simulation of fluid flow and geomechanics
- Based on simplified model the optimum time for re-fracturing treatment can be predicted
- In this model optimum time corresponds to maximum distance to isotropic point as most additional gas is connected to the new fracture
- Quantity of permeability changes the time frame of stress reversal region
- Impact of anisotropy and heterogeneity has been investigated showing:
 - Anisotropic permeability changes maximum dimension and time frame
 - Heterogeneous permeability deforms the elliptical shape of the stress reversal region

Thank you for your attention!

B. Hagemann, J. Wegner, L. Ganzer

14

BACKUP

ENVIRONMENTAL IMPACT OF HYDRAULIC FRACTURING

- Hydraulic fracturing involves advantages and risks
- Under political discussion in Germany
- A neutral body of experts was founded
- For further information visit: www.dialog-erdgasundfrac.de

