Design and Analysis of Micro-Heaters using COMSOL Multiphysics For MEMS Based Gas Sensor

V. S.Selvakumar, S.Aravind, R.Padamapriya, B.Preethi

Under the Guidance of : Dr.L.Sujatha Ph.D.[IITM], Professor/ECE , Co-ordinator / NMDC

Rajalakshmi Engineering College, Thandalam, Chennai 602105.

Excerpt from the Proceedings of the 2012 COMSOL Conference in Bangalore

Objective

We have looked for geometric optimization of the heater structure to achieve high temperature uniformity by performing analysis using COMSOL Multiphysics 4.2, a Finite Element Analysis (FEA) Package.

Sensitivity of the Sensor

Sensitivity can be improved by **optimizing the heater geometry** to obtain the following:

- Maximum Temperature
- Low power Consumption
- More Uniformity of Temperature on the membrane

Simulated Results for Existing Micro Heater Structures

Square hot plate: Max. temperature = 483.83 deg Kelvin Single Meander: Average temperature = 388.356 deg Kelvin Percentage of Area Greater than 80% max temperature = 73.14%

03.11.2012 Micro Heater temperature optimisation_REC

Existing Structures – contd...

Double Meander

Max. temperature = 483.83 deg Kelvin Double Meander: Average temperature = 406.906deg Kelvin Percentage of Area Greater than 80% max temperature = 68.14%

03.11.2012 Micro Heater temperature optimisation_REC

Max. temperature = 483.83 deg Kelvin Double Meander: Average temperature = 435.725deg Kelvin Percentage of Area Greater than 80% max temperature = 71.91%

New Heater structures

Type 1: Grill Type

Grill Microheater Type 1

Grill Microheater Type 2

Grill Microheater Type 3

Grill Micro heater Type 4

Results and Discussion

As the voltage is varied from 0.5 to 5 V in increments of 0.5 V the temperature increases exponentially. The same maximum temperature was obtained for all the structures; however there was a notable difference in temperature uniformity

Power Calculation

• The heating Power (P) of a microheater can be calculated applying a voltage (V) across the two ends of a resistor (R)

$$P = V^2 / R \tag{1}$$

A resistance of thin microheater can be found by using

$$R = \rho L / wt \tag{2}$$

• Where *p* is the resistivity of material; *L* is the Length; *w* is the width; *t* is the thickness.

References Resources

- 1. Woo-Jin Hwang, Kyu-Sik Shin, Ji-Hyoung Roh, Dae-Sung Lee and Sung-Hoon Choa, "Development of Micro-Heaters with Optimized Temperature Compensation Design for Gas Sensors", *Sensors* (2011)
- 2. G.Velmathi, N.Ramashanker and S.Mohan, "2D Simulations and Electro-thermal analysis of Micro-heater designs using COMSOL for Gas sensor Applications", COMSOL Conference (2010)
- G. Eranna a , B. C. Joshi a , D. P. Runthala a & R. P. *Gupta, "Oxide Materials for Development of Integrated Gas Sensors*—A Comprehensive ReviewCritical Reviews in Solid State and Materials Sciences Publication details, including instructions for authors and subscription information: 10 Aug 2010.
- 4. Monika Gayake, Dhananjay Bodas, S.A.Gangal, "Simulations of Polymer Based Micro Heater Operated at Low Voltage", Agharkar Research Institute(2010)
- 5 V. K. Khanna, Mahanth Prasad, V.K.Dwivwdi, Chandra Shekhar, A.C.Pankaj & J.Basu, "Design and electro-thermal simulation of a polysilicon micro heater on a suspended membrane for use in gas sensing", *Indian Journal of Pure & Applied Physics* (2007)
- 6. J.Cerda Belmonte, J.Puigcorbe, J.Arbiol, A.Vila, J.R.Morante, N.Sabate, I.Gracia and C.Cane, "High-temperature low power performing micro-machined suspended micro-hotplate for gassensing applications", *Sensors and Actuators* (2006)
- 7. T. Iwaki, J.A.Covington, F.Udrea, S.Z.Ali, P.K.Guha and J.W.Gardner, "Design and simulation of resistive SOI CMOS micro-heaters for high temperature gas sensors", *Journal of Physics* (2005)

THANK YOU

03.11.2012 Micro Heater temperature optimisation_REC