A Practical Method to Model Complex 3D Geometries with Non-Uniform Material Properties Using Image-based Design and COMSOL Multiphysics Jihan F. Cepeda^{1,2}, Sohan Birla², Jeyam Subbiah^{1,2}, and Harshavardhan Thippareddi¹ ¹Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68583-0919 USA; ²Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583-0726 USA.

Introduction: Geometries with heterogeneous material properties are typically defined as a set of multiple parts, each part representing a different material^{1,2,3,4}. However, assembling or defining the individual parts of complex geometries can be difficult^{1,5}.

Case Study: Modeling air-cooling of a chicken carcass.

Figure 1. Potential issues when importing complex geometries.

The following method can be used for meshing complex geometries with heterogeneous material properties:

STEP 1 - Scanning and 3D reconstruction⁵

Figure 2. Heterogeneous material properties of the chicken carcass defined using image-based meshing (with Materialise Mimics) and interpolation functions of COMSOL Multiphysics.

t = 0 hr t = 0.5 hr t = 1.5 hr t = 3 hr t = 6 hr 30 °C

 Build 3D surface geometries for the object as a unit, and for each sub-part separately

STEP 2 - Meshing

Mesh object as a unit, and each subpart separately
Export meshes as COMSOL native mesh files (.mphtxt)

STEP 3 - Material labeling

 Create look-up table for materials using custom Read Mesh of Object
Read Meshes of Subparts
For Each Subpart
 For Each Node in Subpart
 -Find Nearest Neighbor
 Node in Object Mesh
 -Label the Node in Object
 Mesh with Corresponding
 Material
 Next Node in Subpart

Figure 3. Simulation of air-cooling of a poultry carcass using the COMSOL modules for *Heat Transfer in Solids, Transport of Diluted Species,* as well as the *LiveLink for MATLAB*. Model was validated in a poultry processing plant⁶.

Conclusion: The proposed method can be used to mesh complex geometries and to assign heterogeneous material properties in COMSOL Multiphysics without the challenge of assembling

algorithm	
-----------	--

М				Labeled Nodes.txt						
Ν.4.		^	ρ [kg / m³]	Cp [J / kg K]	k [W / m K]	Material	z [m]	y [m]	x [m]	
IM.			1,040	2,021	0.265	Meat	2.78E-02	1.14E-01	1.30E-01	
			1,040	2,021	0.265	Meat	2.98E-02	1.15E-01	1.33E-01	
Next Node			1,040	2,021	0.265	Round Bone	5.48E-02	5.69E-02	1.77E-01	
			1.2	1,005	0.026	Air	7.06E-02	7.71E-02	1.05E-01	
Subnart	Next		1,040	2,021	0.265	Rib Bone	-1.98E-02	6.97E-02	7.16E-02	
Subpure	IICAC	~	1,040	2,021	0.265	Rib Bone	-1.73E-02	6.55E-02	7.26E-02	

STEP 4 - Define material properties by interpolation

 Import only the mesh for the object as a unit

	Property	Name	Value	Unit
~	Thermal conductivity	k	k1(x,y,z)	W/(m*K)
~	Density	rho	rho1(x,y,z)	kg/m^3
~	Heat capacity at constant pr	Ср	Cp1(x,y,z)	J/(kg*K)

complex multipart geometries.

References:

- 1. Tabor G., Young P.G., Beresford West T., and Benattayallah A., *Engineering Applications of Computational Fluid Mechanics*, 2, 126-135 (2007)
- 2. Said R., Schüller R.B., Young P., Aastveit A., and Egelandsdal B., COMSOL Conference, Grenoble (2007)
- 3. Said R., Cotton R., Young P., Datta A., Elwassif M., and Bikson M., COMSOL Conference, Boston (2008)
- 4. Hermans F. K., Heethaar R. M., Cotton R. T., and Harkara A., COMSOL Conference, Milan (2009)
- 5. Cepeda J.F., Weller C., Negahban M., Subbiah J., and Thippareddi H., Food Engineering Reviews, 5, 57-76 (2013)
- 6. Cepeda J.F., Birla S., Subbiah J., and Thippareddi H., *IAFP Annual Meeting*, Charlotte, NC (2013)

Excerpt from the Proceedings of the 2013 COMSOL Conference in Boston