

Comparing Isotropic and Anisotropic Brain Conductivity Modeling: Planning Optimal Depth-Electrode Placement in White Matter for Direct Stimulation Therapy in an Epileptic Circuit

Leopoldo Cendejas Zaragoza ¹, Brian Hondorp ², Marvin A. Rossi ³

- ¹ Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Ciudad de México, Mexico City, Mexico
- ² Rush Medical College, Chicago, IL, USA
- ³ Rush University Medical Center, Chicago, IL, USA

Goal

Calculate a patient-specific brain conductivity map for predicting the extent to which investigational direct stimulation therapy (NeuroPace, Inc) can propagate through pathological white matter.

Isotropic Model

Workflow

Volumetric Mesh Generation

The composite of brain and CAD electrode was used to generate a multi-part volumetric mesh implementing Simpleware's, +FE-free meshing algorithm in the +FE module.

Resulting mesh was imported to COMSOL Multiphysics. V 3.4b.

Methods

- Develop isotropic and anisotropic human brain finite element method (FEM) models from SPGR magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) for estimating tissue conductivities during direct stimulation therapy.
- Calculate electrostatic electric field (Efield) and current density surrounding depth contact electrode leads, virtually placed in white matter.

Segmentation of Brain Compartments

Three brain compartments, using SPGR MRI, were considered:

- A. White matter
- B. Grey matter
- C. Cerebrospinal Fluid

Calculate Electric Field and Current Density from Stimulation & Compartments

An isotropic electrical conductivity was assigned for each brain compartment:

- White matter=0.15S/m
- Grey matter=0.06S/m
- CSF=1.79S/m

A stimulation intensity was set to a peak-topeak potential difference of 5V.

Depth Electrode Placement

A CAD electrode model (composed of four conductive cylinders separated by insulators) was positioned longitudinally in the temporal lobe White matter at the grey-white matter interface.

Anisotropic Model

Workflow for Developing a 2D Model

Extract and build
Diffusion
tensors from
high resolution
DTI

Convert
diffusion
tensors into
electrical
conductivity
tensors

Create a rectangular geometric entity for each tensor

Create a geometric entity for the electrode.

Calculate
E-field
and
current
density

Create a Rectangular Geometric Entity for Each Voxel

A rectangular geometric entity was created for each voxel and related to the corresponding tensor using LiveLinkTM for MATLAB.

Extract Diffusion Tensors from High Resolution DTI

A program was developed in MATLAB to extract a 2nd rank water diffusion tensor for each voxel in a DTI.

 $egin{aligned} oldsymbol{D} & Dxx & Dxy & Dxz \ Dxy & Dyy & Dyz \ Dxz & Dyz & Dzz \ \end{bmatrix}$

Convert Diffusion Tensors to Conductivity Tensors

A linear relationship was established between diffusion tensors D and conductivity tensor σ .

$$\sigma = \left(\frac{\sigma_e}{d_e}\right) D$$

 $\frac{\sigma_e}{d_e} = 0.736 \, S(s) / mm^3$

Geometric Entity for the Electrode

A geometric entity for the electrode was placed in the temporal lobe.

A potential difference was then applied to the electrode.

Results

Isotropic Model

A uniform pattern in E-field lines is obtained after applying the potential difference to the electrode contacts.

Anisotropic Model

The anisotropic associated E-field and current densities followed anatomical boundaries not apparent in the isotropic conductivity model.

Conclusions

Further development of this proof-of-concept anisotropy-driven conductivity planning workflow will facilitate strategic placement of a minimal number of depth-electrode contacts for stabilizing an extensive pathological epileptic network with investigational direct neurostimulation therapy.