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Abstract: Air damping can be detrimental to the 
performance of vibrating MEMS components. 
Quantitative evaluation of the damping is 
challenging due to the complex interaction of air 
with moving structures and typically requires 
numerical simulations. A full three-dimensional 
analysis can be computationally very expensive, 
time consuming and not feasible. Here, we 
present a simplified two-dimensional modeling 
of damping per unit length of selected MEMS 
structures. The simulated air damping results 
were compared with experimental measurements 
of corresponding piezoactuated resonators: in-
plane and out-of-plane tuning forks, two types of 
out-of-plane cantilevers and a torsional 
micromirror. The applicability of the simplified 
model is verified by a good (2-30%) agreement 
between the simulated and measured Q-values.  
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1. Introduction 
 
Various MEMS devices, resonators and sensors 
are designed to operate in air and viscous fluids. 
Excessive air damping can be detrimental to the 
performance of oscillating MEMS components. 
Quantitative evaluation of the air damping is, 
therefore, required already during the design 
stages to obtain accurate predictions of the 
device performance. The interaction of fluid flow 
with moving structures is complex such that 
analytical approximations of the damping 
coefficient are available only for simple 
structures and trivial boundary conditions. More 
complex systems with structures moving with 
respect to each other and in proximity to 
stationary objects typically require simulations to 
reliably evaluate the air damping. Thus, a simple 
out-of-plane cantilever oscillating inside a pre-
etched cavity (Figure 1) experiences damping 
due to the interaction with several types of flow 
(squeeze-film, shear flow and drag due to the 
direct air resistance). The damping due to the 

individual types of flow can be evaluated using 
simplified analytical models [1] or circuit 
analysis [2,3]. However, due to the existence of 
intermediate flow regimes (Figure 1) and 
geometrical sensitivity of the fluid-structure 
interaction, reliable estimation of the damping 
coefficients requires computational flow 
simulations. COMSOL MultiphysicsTM was 
previously used successfully for air damping 
simulations in angular comb-drive micromirrors 
[4]. To evaluate the applicability of the Fluid-
Structure Interaction interface of COMSOL 
MultiphysicsTM for estimation of the air damping 
for a variety of other MEMS devices, the 
experimental and simulated performance of 
several typical resonator MEMS systems in this 
paper are compared: two types of out-of-plane 
cantilevers, in-plane and out-of-plane tuning 
forks, and a torsional mirror (Figure 2). A full 
three-dimensional damping analysis is 
computationally very expensive and time-
consuming. Instead, a simpler two-dimensional 
analysis of the damping per unit length of the 
structures and as a function of initial 
displacement was performed (Figure 2 and 3). 
Such an approximation neglects edge effects and, 
in case of a bending cantilever, also the rotary 
motion of the beam cross-section. 
 

 
Figure  1. Air flow simulation time-snapshot of an 
out-of-plane cantilever oscillating inside a pre-etched 
cavity. The arrows indicate the velocity field of the air 
flow around the cross-section of the cantilever. The 



 

arrow within the cantilever indicates instantaneous 
velocity of the cantilever. Several regions of flow can 
be identified (shear flow, squeeze-film flow, drag due 
to the direct air resistance) as well as transitional 
regions. 
 
The validity of the approximation is, however, 
justified by the consistency of simulated and 
experimental results. The good agreement of the 
experimental and corresponding simulation 
results validate the applicability of the simplified 
flow model for evaluation of the air damping in 
other more complex system. 
 

 
Figure  2. Simulation of air damping of various 
MEMS systems resonating inside pre-etched cavities 
using simplified two-dimensional model with 
numerical “springs” that replace the deformable 
flexures and generate restoring forces. Shown are 
schematic deformation of each system in 3D with the 
resonance frequency and corresponding simplified 2D 
model air flow simulation time-snapshots. a) out-of-
plane cantilever, 80 kHz. b) In-plane tuning fork, 250 
kHz. c) Out-of-plane tuning fork, 1 MHz. d) Torsional 
mirror, 50 kHz.  
 

2. Experimental measurements  
 
The simulated systems aimed at modeling the air 
damping of selected MEMS devices. The test 
devices, such as cantilever and torsional 
resonators (Fig 2), in this study were fabricated 
using c-SOI technology (cavity silicon on 
insulator) technology in 50-µm-thick device 
layers. The devices were actuated by means of 
thin (~1 µm) aluminium nitride (AlN) 
piezolayers processed on top of the released 
structures (cantilevers or actuating flexures). The 
air damping in the following devices was 
characterized experimentally: 
 

· Wide cantilever C1 (width, height, 
length 100×50×900 µm3); Resonance 
frequency ~80 kHz (Figure 2a). 

· Narrow cantilever C2 (width, height, 
length 50×50×900 µm3). Resonance 
frequency ~80 kHz. (not shown) 

· In-plane tuning fork TF1 (width, height, 
length 100×50×700 µm3). Resonance 
frequency ~250 kHz (Figure 2b). 

· Out-of-plane tuning fork TF2 (width, 
height, length 26×50×238 µm3). 
Resonance frequency ~1 MHz (Figure 
2c). 

· Torsional mirror M (width, height, 
length 400×50×800 µm3). Resonance 
frequency ~50 kHz (Figure 2d, 
actuators not shown to facilitate clarity). 

 
The characterization of the devices’ performance 
was based on measuring their electrical 
admittance in a frequency range around their 
resonances both in vacuum and in air. The 
mechanical Q-values were then derived from the 
fits of the equivalent RmLmCm-C0 circuit [3,5] to 
the admittance-frequency curves (Figure 3). 
Measurement of the Q-value of the same device 
both in air (Qair) in vacuum (Qvacuum) allows 
isolating the damping effect due to interaction 
with  air  flow  (Qflow) alone from other damping 
effects (anchor loss, thermoelastic damping, 
surface losses, etc). 
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Figure  3. Measurement of electrical admittance of a 
piezodriven cantilever (Fig. 2a) around the resonance 
frequency with corresponding fits of equivalent circuit 
elements (a) in air with a derived Q-value of ~150, (b) 
in vacuum with a derived Q-value of ~6500. (Phase of 
the admittance not shown.) 
 
3. Fluid flow properties and boundary 
conditions 
 
Choosing the appropriate flow properties and 
boundary conditions is crucial for reliable 
estimation of the air damping. Several 
dimensionless quantities can be used to 
categorize the type of the flow. The Knudsen 
number (Kn) is defined as the the ratio of the 
mean free path of fluid molecules to the 
characteristic dimension in the system. It can be 
used to verify the applicability of the viscous 
fluid dynamics. The typical gap width in the 
studied system is 10-20 µm (Fig. 2c). With the 
mean free path of gas molecules in air at 300 K 
of ~70 nm, the Knudsen number equals to 3.5-
7×10-3. Since 10-3<Kn<10-1, it can be concluded 
that the slip flow dynamics formalism is 
applicable to model the air flow [6]. The 
stationary surfaces adjacent to the narrow gaps in 
the model were, therefore, defined as walls with 
slip boundary condition while no-slip condition 
was applied to further lying walls (Fig. 4c).  
    The Reynlods number Re can be used to 
categorize the flow as either laminar or turbulent. 
It is defined as 
 

 

(2) 

  

where ρ is the fluid density, v and L – 
characteristic velocity and dimension of the 
system, respectively, and µ is  the  dynamic  
viscosity of the fluid. The maximum of the 
Reynolds numbers for the studied systems are 
summarized in Table 1. With Re<<2000 it can be 
concluded that the air flow is laminar for all the 
studied systems and no turbulence effects needed 
to be included in the simulations. 
 
device f0 

[kHz] 
Q in 
air 

Δx 
(AC) 
[µm] 

v 
(AC) 
[m/s] 

Re 

C1 80 150 0.75 0.38 0.25 
C2 80 180 0.90 0.45 0.30 
TF1 250 1200 0.28 0.45 0.30 
TF2 1000 5600 1.26 7.91 5.27 
M 50 175 0.05 0.02 0.01 

Table 1. Measured devices (C1 – wide cantilever; C2 
– narrow cantilever; TF1 – in-plane tuning fork; TF2 – 
out-of-plane tuning fork; M – torsional resonator, 
micromirror. See text for further details on the 
devices) with simulated maximum amplitude of the tip 
displacement and velocity using the measured Q-
values in air. The velocity can be used to estimate the 
Reynolds number and categorize the type of the fluid 
flow. 
 
    The Mach number, M, is defined as the ratio 
of the speed of structures moving through a fluid 
to the speed of sound in the fluid. If M<0.3, the 
gas compression effects can be neglected. From 
Table 1, the maximum velocities of the 
structures are considerably smaller than 30% of 
the speed of sound in air 0.3×343≈100 m s-1, 
such that the simplified incompressible flow 
model could be used in simulations for all the 
studied systems. 
 
4. Simplified air flow model 
 
Figure 4 depicts the principle of the simplified 
2D model that replaces the more complex 3D 
simulation. Initially deformed beam with a tip 
displacement A (Fig. 4a) is subdivided into 
narrow cross-sections of width dx and mass dm, 
each displaced by an initial amplitude Ai, such 
that the combined shape of the cross-sections 
resembles the original beam’s mode shape (Fig. 
4b). The cross-sections oscillate vertically and 
synchronously at the resonance frequency of the 
original beam due to the action of spring forces 
dk (Fig 4b). Replacing a three-dimensional air 



 

flow simulation with such a two-dimensional 
model is justified when the beam length is much 
greater than its other dimensions since the air 
flow profile can also be assumed to be two-
dimensional. For a laminar type of flow, the 
interaction of different oscillating cross-sections 
and the air flows induced by them can be 
considered negligible, such that the total air 
damping force is a sum or an integral of viscous 
damping forces experienced by individual cross-
sections.   Modeling  a  cross-section  of  an  
extended torsional resonator (Fig. 2d) is 
appropriate due to the symmetry of the proof 
mass about the rotation axis along the longer 
dimension (neglecting the edges). In the case of a 
bending beam, assuming the straight motion of 
the cross-section is an additional approximation 
because the neutral axis of the beam moves not 
only translationally but also rotationally. For 
small amplitudes of vibrations of a long beam 
the rotational motion is, however, relatively 
small and can be neglected. The validity of the 
approximation was demonstrated in a similar 
approach where the tines (beams) of the tuning 
forks were modeled as spheres or strings of 
spheres in straight motion [7-12]. However, 
modeling rectangular cross-sections is more 
appropriate as they reproduce closer the original 
geometry of the structures. 
    The simulations in time domain were initiated 
by displacing the cross-sections of the structures 
by initial amplitude A from the equilibrium 
position (in case of torsional resonators, tilting 
them by angle A). Due to the restoring forces or 
torques, the simulated systems began to oscillate. 
The oscillation amplitude decayed due to the 
interaction with air as the simulations progressed 
in time, and the Q-values were estimated from 
the logarithmic decrement of amplitude (Fig. 
4d). The restoring spring forces/torques due to 
the springs’ deformation were replaced by 
numerical forces/torques. The restoring 
forces/torques were defined as, e.g., boundary 
load (Fig. 3c) -dk(A+u) or -dk(A+v), where dk is 
the spring constant per unit area (adjusted to 
result in the required resonance frequency of the 
system), and u and v are the structural 
displacement of the centre of mass horizontally 
(in-plane) and vertically (out-of-plane), 
respectively.  

 
Figure 4. Schematic presentation of the simplified air 
damping simulation of (a) vibrating cantilever beam 
with an initial tip displacement A.  (b)  The  beam  is  
divided into cross-sections of width dx and mass dm, 
displaced from the equilibrium position by 
corresponding amplitudes Ai. The cross-sections move 
synchronously at the resonance frequency of the 
original beam due to the action of spring forces dk. (c) 
Cross-section of the beam inside a pre-etched cavity 
displaced by an initial amplitude Ai. The spring forces 
due to the structural deformations are replaced by 
boundary loads to model the restoring forces. (d) 
Time-domain simulation of a cantilever (Fig. 2a) 
cross-section displacement initially displaced by 1 µm 
from the equilibrium position. Due to the interaction 



 

with air, the amplitude decays. The Q-value can be 
evaluated from the logarithmic decrement of the 
amplitude. 
 
The numerical springs effectively replaced the 
action of actual restoring forces thus eliminating 
the need to simulate the structural deformations 
and reducing the simulation complexity. 
 
5. Comparison of experimental and 
simulated results 
 

Several devices of each type were 
characterized both in vacuum and air. The 
averaged Q-values derived from the electrical 
measurements are summarized in Table 2. The 
Q-values obtained in simulations are given in the 
same table for comparison with the experimental 
values. The simulated Q-values account only for 
losses due to the interaction of the structures 
with the air flow, Qflow, while the Q-values 
measured in air, Qair,  include  also  losses  due  to  
other loss mechanisms (e.g., anchor and support 
losses). In order to isolate the Q-value due to the 
air damping alone, other contributions to the 
overall damping need to be filtered from the 
damping measured in air. These additional loss 
mechanisms can be estimated by performing the 
characterization of the devices in vacuum. Using 
Equation 1, the damping due to the interaction 
with air flow alone, Qflow, can be deduced and 
compared directly with the corresponding 
simulation results (Table 2).  
 

devi
ce 

f0, 
kHz 

Q in 
air 

Q 
vacuu

m 

Q 
flow 

Q 
simula

ted 

Agree
ment 

C1 80 150 6500 153 168 91% 
C2 80 180 6530 185 265 70% 
TF1 250 1200 40000 1240 1190 96% 
TF2 1000 5600 16000 8615 8820 97% 
M 50 175 50000 176 214 82% 

Table  2. Comparison of measured and simulated Q-
values for the studied systems (C1 – wide cantilever; 
C2 – narrow cantilever; TF1 – in-plane tuning fork; 
TF2 – out-of-plane tuning fork; M – torsional 
resonator, micromirror. See text for further details on 
the devices). 
 

The simulated Q-value were evaluated for 
different initial amplitudes of vibration, such that 
the total Q-value for a given structure could be 
calculated by weighing the amplitude-dependent 

Q(Ai) with the resonant mode shape of the 
structure over its length. However, the simulated 
Q-values’ variations over the typical amplitude 
ranges (Table 1) were insignificant. 

The agreement between measured and 
simulated values is very good (>90%) for 
structures with rectangular cross-sections: wide 
cantilever (cross-section 100×50 µm), in-plane 
tuning fork (cross-section 100×50 µm), and the 
out-of-plane tuning fork (cross-section 26×50 
µm). The agreement between the measured and 
simulated results is worse (70%) for the narrow 
cantilever with a square cross-section (50×50 
µm). Even though the agreement is adequate for 
practical purposes, the reason for the larger 
mismatch is not clear. Presumably, edge effects 
are more pronounced in beams having square-
shaped rather than rectangular cross-sections. 
The agreement between the measured and 
simulated results is relatively good (82%) for the 
micromirror torsional resonator with a 
rectangular cross-section (400×50 µm), even 
though the 2D model is more applicable for this 
type of device than for a bending beam where the 
rotational motion of the cross-sections is 
neglected. The discrepancy can be partially 
explained by the simplified simulation where the 
actuator beams were not modeled. The 
agreement can potentially be improved if the 
effects of the more complex geometry on the air 
flow patterns are taken into account.  

The simplified 2D simulation results, 
however, generally fit adequately well the 
experimental results over a wide range of 
frequencies (from tens kHz to MHz) and for a 
variety of moving structures (in-plane, out-of-
plane and torsional motion), verifying the 
validity of the model for estimation of the air 
damping in other more complex MEMS 
geometries and structures. 
 
7. Conclusions 
 

We investigated the air damping in several 
test MEMS piezoactuated resonating structures 
both experimentally and numerically. The 
studied test systems involved various types of 
motion within pre-etched cavities (in-plane, out-
of-plane and torsional) and in a wide range of 
frequencies (104 –  106 Hz). The simplified 2D 
fluid-structural interaction model of the systems 
was used to estimate the Q-values of the studied 
systems that were compared with the 



 

experimentally obtained Q-values. The 
simulation and experimental results generally 
agree very well or adequately well, with the 
discrepancies attributed to approximations in the 
model or simplifications done in the simulations. 
The good agreement of the simulation and 
experimental results validates the model and 
proves its feasibility for estimation of the air 
damping in other MEMS systems. 
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