

Simulation of the Coalescence and Subsequent Mixing of Inkjet Printed Droplets

M.H.A. van Dongen, A. van Loon, H.J. Halewijn, J.P.C. Bernards

Fontys University of Applied Sciences, Expertise Centre Thin Films & Functional Materials, Eindhoven, the Netherlands

Expertise Centre Thin Films & Functional Materials

THINK BIGGER

Focus on acquiring knowledge in the field of thin film technologies and functional materials and passing on this knowledge to SME's and education.

Expertise in:

- Functional Polymers
- Applications of Functional Polymers
- Thin Film technology
- Measuring methods for the analysis of materials and thin films.

Spearheads include:

- Polymer electronics
- Structured substrates: (plastic) substrates with micro and nano structures
- Inkjet printing of polymers and nano particles
- Measurement and analysis methods.

Projectgoal

Investigate the mixing of coalescing low viscosity small droplets.

- Equally sized droplets
- Unequally sized droplets

coalescence vs diffusion

Inkjet printing range

- Droplets in range of 10-80 pl, i.e.80-150 µm in diameter on substrate
- Viscosity <10 mPas

Project Challenges

Visualizing the coalescing and mixing processes in time

- Size of the droplets
- Speed of coalescence (bridge formation) for small low viscosity droplets
- Detection of flows inside droplets

Navier Stokes Equation

$$\rho \frac{\delta u}{\delta t} + \rho (u \cdot \nabla) u = -\nabla p + \eta (\nabla \cdot u) + F_g$$

Component mass balance

$$\frac{\delta C}{\delta t} + (u \cdot \nabla C) - D_{AB} \nabla^2 C = 0$$

Surface energy induced fluid flow

- Short lived in time
- Fastest in initial bridge formation (first milliseconds)
- Velocity determined by surface energy and internal droplet pressure

Diffusion based flow

- Induced by concentration gradient
- Long time duration
- velocity determined by diffusion coefficient D_{ab}

Equally sized droplets

Unequally sized droplets

Experimental

Comparison diffusion volume ratios

Fick's Law:
$$\frac{C}{C_0} = \frac{x}{2\sqrt{\pi \cdot D_{AB} \cdot t}} \exp\left(\frac{-(x)^2}{4 \cdot D_{AB} \cdot t}\right)$$

Comsol Multiphysics

- Two models:
 - Laminar Two-Phase Flow, Phase field model
 Tracking of interface between coalescing droplets
 - Transport of Diluted species model
 Tracking of concentration gradient

Figure 3: Geometry for droplets with volume ratio 4:1. Small droplet is filled with 0.1 mol/m³ dye (distances in μ m)

Comsol Results (1)

Tracking of interface (Laminar Two Phase flow)

Comsol Results (2)

Tracking of Concentration Gradient

(Transport of Diluted species)

Conclusions

- The coalescence and subsequent mixing of small inkjet printed droplets is investigated both experimentally and by 3D-simulation in Comsol Multiphysics.
- It was found that for equivoluminal droplets, material transport over the coalescence bridge can be described by diffusion.
- For droplets of unequal volume, convective transport plays a significant role in the first 10 ms after the bridge formation. This is driven by surface tension induced flows.
- The models Laminar Flow, Phase Field and Transport of Diluted Species show a good accordance with the experimental data and theoretical theories.

THINK BICCER

