Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm³-reactor

Fabio Ferrero , Robert Zeps, Martin Kluge

BAM Federal Institute for Materials Research and Testing

What is tetrafluoroethylene (TFE)?

- Tetrafluoroethylene (C₂F₄) is a colorless gas
- TFE has a wide commercial relevance
 - PTFE (Teflon®)
 - PTFE Co-polymers

- TFE is a chemically unstable gas → explosive decomposition without oxidant (accidents in chemical plants*)
- <u>Focus</u>: ignition of TFE caused by contact on hot surfaces (self-ignition)

^{*} Reza, A., Christiansen, E., A Case Study of a TFE Explosion in a PTFE Manufacturing Facility, Process Safety Progress, 26(1), 77-82 (2007)

Main reactions

TFE at high pressure comes in contact with hot surfaces

$$C_2F_4 \Leftrightarrow 0.5 \text{ c} - C_4F_8$$

 $\Delta H_R = -103(kJ/mol_{TFE})$

$$\Delta H_R = -103(kJ/mol_{TFE})$$

Main reactions

TFE at high pressure comes in contact with hot surfaces

DIMERIZATION

$$C_2F_4 \Leftrightarrow 0.5 c - C_4F_8$$

$$\Delta H_R = -103(kJ/mol_{TFE})$$

DECOMPOSITION

$$C_2F_4 \Rightarrow CF_4 + C(s)$$

$$\Delta H_R = -257 (kJ/mol_{TFE})$$

Extended reaction net*

^{*}Bauer, S.H., Javanovic, S., The Pyrolysis of Octafluorocyclobutane - Revisited, International Journal of Chemical Kinetics, 30, 171-177 (1998)

100-dm³-autoclave

Properties: • stainless steel • 1200 kg • 360° rotation • 345 bar(a) at 20 °C

Measurements: • temperature (up to 3 TC) • pressure

100-dm³-autoclave

Tests:

- $p_0 = 5$, 10 and 20 bar(a)
- T_{wall,0} is varied
- => lowest T_{wall,0} with an ignition

Properties: • stainless steel • 1200 kg • 360° rotation • 345 bar(a) at 20 °C

Measurements: • temperature (up to 3 TC) • pressure

100-dm³-autoclave

Tests:

- $p_0 = 5$, 10 and 20 bar(a)
- T_{wall,0} is varied

=> lowest $T_{wall,0}$ with an ignition

Properties: • stainless steel • 1200 kg • 360° rotation • 345 bar(a) at 20 °C

Measurements: • temperature (up to 3 TC) • pressure

Meshes (2D): only the TFE domain is computed

Quality > 0.85

Equations

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \nabla) \vec{u} = -\nabla p + \eta \nabla^2 \vec{u} + \vec{F}$$

Momentum

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \vec{u}) = 0$$

Continuity

$$\rho c_P \frac{\partial T}{\partial t} = \nabla \cdot (\lambda \nabla T) - \rho c_P \vec{u} \cdot \nabla T + S_T$$

Heat transfer

$$\frac{\partial C_k}{\partial t} = \nabla \cdot \left(D_k \nabla C_k \right) - \vec{u} \cdot \nabla C_k + S_{C_k}$$

Mass transfer

$$\rho = p / (\mathbf{R}_s T)$$

Ideal gas law

Chemical Engineering Module:

- non-isothermal flow mode (chns)
- convection and conduction mode (chcc)
- convection and diffusion mode (chcd)

Vertical Reactor

$$p_0 = 11 \text{ bar(a)}$$

 $T_0 = 240 \text{ °C}$

Horizontal Reactor

$$p_0 = 11 \text{ bar(a)}$$

 $T_0 = 240 \text{ °C}$

Time=0 Surface: Temperature (degC)

Vertical Reactor

$p_0 = 11 \text{ bar(a)}$ $T_0 = 240 \text{ °C}$ t = 54 s

Horizontal Reactor

$$p_0 = 11 \text{ bar(a)}$$

 $T_0 = 240 \text{ °C}$
 $t = 54 \text{ s}$

Prediction accuracy of TFE ignition temperatures (MITD)

- simulations of the self-ignition of TFE in a large scale vessel (100 dm³) were performed
- a good agreement with experimental data was observed
- in particular ignition temperatures of TFE were well predicted
- the model is considered validated for large geometries

Numerical Study of the Self-ignition of Tetrafluoroethylene in a 100-dm³-reactor

Fabio Ferrero , Robert Zeps, Martin Kluge

BAM Federal Institute for Materials Research and Testing

