

Numerical Modeling and Experimental Validation of the Standard Energy Consumption Test in Domestic Ovens

Joaquín Capablo - Energy PhD Engineer

Co-Authors: Nelson Garcia-Polanco, John Doyle

INDEX

- 1. Introduction
- 2. Normative Oven Energy Class Test, EN 50304
- 3. Numerical Model (COMSOL Multiphysics®)
- 4. Results
- 5. Conclusions & Future Work

1. INTRODUCTION

Marie Curie label since 1996

Under FP7, implemented through the People Programme (2007-2013)

ITN (Initial Training Networks)

IEF (Intra-European Fellowships)

IOF (International Outgoing Fellowships)

IIF (International Incoming Fellowships)

CIG (Career Integration Grants)

Pierre and Marie Curie honeymoon, 1895

IAPP (Industry-Academia Partnerships and Pathways)

IRSES (International Research Staff Exchange Scheme) **COFUND** (Co-funding of regional, national, international programmes)

IAPP (Industry-Academia Partnerships and Pathways)

WP1 – Project management Led by SUPSI

University of Applied Sciences and Arts of Southern Switzerland

SUPSI

- T2.1: Heat capture and transfer
- T2.2: Heat storage
- T2.3: Heat recovery and conversion

WP3 – Advanced refrigeration technologies Led by WUT

- T3.1: Magnetic refrigeration
- T3.2: Investigation of material exhibiting the GME

Wrocław University

WP4 - Eco-design: resources sharing as waste recovery (heat & water) Led by WHIRLPOOL

T4.1: Appliance coupling and technologies for integ
T4.2: Application of sol-gel sensors/markers for
identification of chemicals and bacteria in grey water

WP6 – Envisioning the domotic house Led by POLIMI

T6.1: Energy management scenarios
T6.2: Development of a central domotic control unit

WP5 – Application controls for cooking and refrigeration of food Led by POLIMI

T5.1: Innovative technologies for improving, monitoring

T5.2: Innovative heat transfer models for cooking in ovens

15.3: Innovative technologies (sensors and actuators) for monitoring and controlling the refrigeration process

Scopes

- Reduction of the Energy Consumption of home appliances.
- Final Annual Electricity Consumption in residential sector of European Union (EU-27) ≈850 TWh.

10% Reduction

85 TWh

≈50·10⁶ Tn of CO₂ non-emitted

Project High Efficient Ovens , HEO (Life+ program)

2. NORMATIVE OVEN ENERGY CLASS TEST EN 50304

GREENKITCHEN

Brick Test (CEI EN 50304)

WHIRLPOOL MODEL: MINERVA OVEN

Oven model	Energy Consumption (kWh)	Energy consumption label	Heating function	Usable Volume (I)
MINERVA	0.90	A	Static	73

Brick Test (CEI EN 50304)

BRICK

-Position: on the geometric center of the cavity

$$-T_{final}$$
: $T_{initial} + \Delta T$ (55 °C)

<u>OVEN</u>

 $-T_{initial}$: 23 ± 2 °C

 $-\Delta T: 180 \pm 10 \,^{\circ}C$

Brick Test (CEI EN 50304)

BRICK

-Dimensions: 230mm x 114mm x 64mm

-Material: Hypor $C_p=0.80 \text{ J/g}^{\circ}\text{C}$ $\rho=550 \pm 40 \text{ kg/m}^{3}$ Porosity=77%

Representing similar food matrix behavior inside the oven cavity

-Weight:

$$W_{initial} \approx 920g (brick) + 1050 g (water)$$

≈ 1050 g water absorved after 8h in chilled water)

Brick Test (CEI EN 50304)

Temperature monitoration:

-Thermocouples type J (iron/constatan)

- -2 Holes of 2.1mm diameter
- -32mm depth
- -50mm separation between them

Data logger: Yokogawa MV100

Frequence: Every second

Range: -40 to +750 °C

Precision: 0.1 °C

T_{air out}: 1 measurement T_{cavity}: 2 measurements T_{brick}: 2 measurements

3. NUMERICAL MODEL (COMSOL Multiphysics®)

Numerical Model Scope

 Important to model the transient behavior of the oven to be able to reduce the energy consumption

- For example, advanced design can be developed by performing some parametric analyses:
 - Emissivity of the glass
 - Dimensions of the cavity walls
 - Material properties of the cavity walls

Modeling a domestic oven with a 3-glasses door

"Heat and Mass Transfer" Module

$$\rho C_{P} \frac{\partial T}{\partial t} + \nabla \cdot (-k \nabla T) = Q$$

"Transport of Dilute Species" Module

$$\frac{\partial c}{\partial t} + \nabla \cdot (-D\nabla c) = R$$

Boundary conditions:

Experimental transient temperature of different elements of the oven

4. RESULTS

Evolution of the Oven Temperature (t=50min)

Evolution of the Oven Temperature (transient)

Evolution of the Brick Temperature (transient)

Evolution of the Brick Concentration (t=50min)

EVAPORATED WATER (BRICK)

166g (Predicted) vs 171 g (Experimental)

5. CONCLUSIONS & FUTURE WORK

Conclusions

- Experimental Study Information:
 - Standard test for energy consumption, EN 50304.
- Temperature Evolution obtained in the test:
 - Similar to the predictions of evolution of the temperature obtained in the theoretical model.
- Experimental Validation of the Model:
 - Make possible to further study innovative strategies to obtain an optimized oven performance
 - Parametric study
 - Design optimization

Future Work

- Next steps:
 - Use the developed model to optimize the use of energy resources when designing the oven.
 - Parametrical studies to enhance the heat transfer paths.
 - Increase the experimental <u>temperature points</u>:
 - Inside the brick at different depths and positions.
 - In the <u>air boundary layer</u> near the brick surface.
 - In the door glasses.

Thank You for Your Attention

Questions?

Annexes

Thermal Efficiency

Efficienc\psi%) =
$$\frac{E_{load}}{E_{cable}} \cdot 100$$

$$\mathsf{E}_{\mathsf{load}} = \left(m_B \cdot C p_B + m_{(H_2O)L} \cdot C p_{(H_2O)L} \right) \cdot \Delta T + m_{(H_2O)V} \cdot L v_{(H_2O)V}$$

Eload= energy to heat the load = Energy to heat the Brick + Energy to heat the liquid water + Energy to water vaporization

Ecable = energy suppled to oven

Data:

m _B= Brick mass= 920 g

 $m_{(H2O)L}$ = Liquid water mass = 1050 g

 $m_{(H20)v}$ = Vaporized water mass = 120 g

 Cp_B = Brick specific heat* = 0.8 J/g.K

 $Cp_{(H2O)L}$ = Liquid water specific heat = 4.204 J/g.K

 $Lv_{(H2O)v}$ = Water latent heat (at 100°C) = 2260 J/g

1 J = 0.000278 Wh

E_{load}= 154.14 Wh

E_{cable}= 860 Wh (base case) → Efficiency = 17.9 %

Tamb

T1

