MULTIPHYSICS

Lithography-patterning-fidelity-aware electron-optical system design optimization by using COMSOL MULTIPHYSICS with MATLAB 藉由COMSOL MULTIPHYSICS結合MATLAB來達成基於圖 案製作真確度之電子透鏡系統最佳化設計

及11兵准反之电了这现示列取任100

Presenter: Sheng-Yung Chen (陳勝勇)

Advisor: Prof. Kuen-Yu Tsai (蔡坤諭)

Dept. of Electrical Engineering, National Taiwan University

Nov. 2012

Outline

- Introduction to Lithography
- Traditional Electron-Optical System (EOS) Design Optimization
- Proposed Patterning-fidelity-aware Method
- Conclusions

VLSI Process Flow

http://lsiwww.epfl.ch/LSI2001/teaching/webcourse/ch02/ch02.html#2.2

Limitations of Optical Lithography Systems

Optical lithography

 $HP = k_1 \frac{\lambda}{NA}$

- Pro
 - Higher throughput
- Con
 - Low-resolution operation

ITRS requirements

Ref: ITRS, 2011 [2]

- **Electron beam** lithography is required in 2015 and beyond.
- Electron beam lithography has issue of low throughput.

Single- and Multiple-Electron-Beam Lithography Systems

Single-electron-beam lithography

Pros

- High-resolution operation
- Maskless operation
- Cons
 - Lower throughput
 - Coulomb effect

- Retain pros of single electron beam lithography system
- Higher throughput

■ Con

 Higher structure complexity, especially in electron-optical systems (EOSs) due to multiple beam nature

Multiple-Electron-Beam–Direct-Write Lithography Systems

- Several countries have been seriously involved with research in electron-beamdirect-write systems.
- The main goal of the NTU team is to seamlessly develop equipment, process, and software technologies for MEMS-based maskless e-beam exposure systems.

Traditional EOS Design Optimization Flow

X. Yang et al., 2002 [11], 2004 [12], 2007 [13]

- To ensure a successful EOS design, many factors have to be considered.
 - Focusing properties (FPs)
 - Patterning fidelity (PF)
- In traditional EOS optimization flow, FPs are typical performance indices selected when optimizing the EOS design parameters.
- However, the performance indices related to FPs may have no direct relation to lithography PF, which is judged by the quality of the developed resist patterns.

Proposed EOS Design Optimization Flow

S.-Y. Chen et al., 2011 [14]

 A new EOS design methodology which directly incorporates lithography PF metrics into the optimization flow is proposed.

Parameters and Values of the Demonstration EOS and the Optimization Setting

			_				
Parameters	Abbreviations	Values	_,				
Spacing between substrate and	Н	1.000					
gate electrode	ng	1 µIII		Wafar			
Spacing between gate and focus	H.	1.000		(Anada)	7.1		$\rightarrow V_{\rm w}$
electrodes	H _f	1 µIII	Î	(Anode)		Oxide	
Thickness of the gate electrode	T_{g}	0.64 µm					
Thickness of the focus	T_{\circ}	0.64.11m				Metal	
electrode	1 f	0.04 μΠ					
Work distance	WD	100 µm	WD			\uparrow	
Radius of the emission top	r	15 nm				r	
Height of the emission top	h	0.4 µm				$h \mid / \mid \setminus$	
Weight of the emission top	Ь	o.8 µm					
Voltage of the wafer	$V_{ m w}$	5000 V	Ļ		D_{f}	\overleftarrow{b}	
Voltage of the tip	V_{t}	o V	$T_{\rm f}$	Focus			
Wafer per hour	wph	1	H_{ϵ}	SiO			$\perp V_{\sigma}$
Voltage of the gate	$V_{ m g}$	_					5
Voltage of the focus	$V_{ m f}$	_	Ig _↓	Gate			
Diameter of the gate	$D_{ m g}$	_	H_{g}	SiO ₂			$-V_{g}$
Diameter of the focus	$D_{ m f}$	-	-		Tin		_
Maximum diameter	D_{\max}	10 µm			пp		<u> </u>
Minimum diameter	D_{\min}	0.45 µm					
Minimum current required (for	I.	$0.076 \text{ m}^{\text{A}}$					
1 wph)	¹ min	0.0/01/1					
Beam current	I _b	_					
Beam spot size	$B_{\rm ec}$	_					

Field Solver (COMSOL MULTIPHYSICS)

- Field solver
 - COMSOL MultiphysicsTM
- Space dimension
 - 2D axial symmetry
- Numerical method
 - Finite element method (FEM)
 - Multiple scale mesh

Field distribution

Potential distribution

Electron Trajectory Simulator (MATLAB)

- Lorentz equation Charged particles motion in fields
 - Based on the particle dynamics of electrons
 - Newton's laws of motion: F = ma
 - Lorentz force: $F = q[E + (v \times B)]$
 - Lorentz factor:

$$m = \gamma m_0, \quad \gamma = \frac{1}{\sqrt{1 - \left(v/c\right)^2}}$$

■ Take *r*-direction for example

$$a_{r} = \frac{d^{2}r}{dt^{2}}, ma = qE_{r} \implies \gamma m_{0} \cdot \frac{d^{2}r}{dt^{2}} = qE_{r}$$
$$\frac{d^{2}r}{dt^{2}} = \frac{qE_{r}}{\gamma m_{0}} \qquad \frac{d^{2}z}{dt^{2}} = \frac{qE_{z}}{\gamma m_{0}}$$

Second order differential equation Method: Runge-Kutta Method (RK)

Ref: P. W. Hawkes et. al., 1996 [15]

F: force *E*: electric field *B*: magnetic flux density *m*: mass *m*₀: static mass of an electron *v*: velocity *c*: speed of light *y*: Lorentz factor *q*: electric charge of a particle *a*: acceleration

Schema of Electron Trajectory

- Emission tip
 - Electrons evenly distribute on tip
 - Current density (*J*) vary with field (*E*)
- Electron trajectory vary with field
- Beam spot size (B_{ss})
 - Beam current rise from 10% to 90% at wafer plane
- Wafer plane
 - 10,000 electrons are plotted according to the current density
 - Each electron has the same current

Proposed Method to Determine Optimal EOS Design Parameters

$$X_{0} = \begin{bmatrix} D_{g} & D_{f} - D_{g} & V_{g} & V_{g} - V_{f} \end{bmatrix}$$
$$= \begin{bmatrix} 1.5 \ \mu m & (3.6 - 1.5) \ \mu m & 90 \ V & 116 \ V \end{bmatrix}$$
$$X_{wp} = \begin{bmatrix} pixel \ size \ dosage \end{bmatrix}$$
$$= \begin{bmatrix} 1 \ nm & 70 \ \mu C/cm^{2} \end{bmatrix}$$

Minimize: B_{ss}

Subject to:
$$X \leq \begin{bmatrix} D_{\max} & D_{\max} & V_g & V_g - V_f \end{bmatrix}$$

 $X \geq \begin{bmatrix} D_{\min} & D_{\min} & 0 & V & 0 & V \end{bmatrix}$
 $D_f \leq D_{\max}$
 $I_b > I_{\min}$
LER $\leq PF_value$
Where: $X = \begin{bmatrix} D_g & D_f - D_g & V_g & V_g - V \end{bmatrix}$
Objective: $NMSE_i(x, y) = \frac{\sum_{x=0}^{n-1} \sum_{y=0}^{m-1} \begin{bmatrix} L(x, y) - R_i(x, y) \end{bmatrix}^2}{\sum_{x=0}^{n-1} \sum_{y=0}^{m-1} L(x, y)^2}, i = 1, ..., p.$

where L(x, y) is the drawn layout, and $R_i(x, y)$ is the each simulated resist pattern.

Preliminary Simulation Results

- Simulation environment
 - COMSOL with MATLAB
- After optimizing the design parameters for the traditional EOS design, the developed resist pattern is shown in the red contour.
 - Its corresponding value of critical dimension (CD) is 26 nm.
- The developed resist pattern after applying the proposed patternfidelity-aware method is shown in the blue contour.
 - Its corresponding value of CD is 22.68 nm.

Conclusions

- A new EOS design methodology that directly incorporates lithography PF metrics into the optimization flow has been proposed.
- The results indicate that the value of corresponding CD and the value of gate CD control are more suitable for the ITRS specifications than before.
- This methodology can also be applied to many multiple-beam systems such as PML₂, MAPPER, and other electron beam case.

Acknowledgements

- Funding Support
 - Taiwan Semiconductor Manufacturing Company Limited
 - National Science Council, Taiwan
- Taiwan Semiconductor Manufacturing Company Limited
 - Dr. Burn J. Lin
 - Mr. Jeng-Horng Chen
- Nanoscale-Design and Fabrication Systems Laboratory
 - Prof. Kuen-Yu Tsai
 - Shiau-Yi Ma, Chun-Hung Liu, Philip C. W. Ng, and Yu-Tian Shen
 - Shin-Chuan Chen, Hsing-Hong Chen, and Hoi-Tou Ng
- National Taiwan University
 - Prof. Jia-Yush Yen, Prof. Chieh-Hsiung Kuan, Prof. Yung-Yaw Chen, Prof. Tien-Tung Chung, and Prof. Jia-Han Li
 - Ming-Shing Su

References

- [1] Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, *IEEE Trans. Semicond. Manuf.* 10, 62 (1997).
- [2] See: International Technology Roadmap of Semiconductors, available at http://www.itrs.net/.
- [3] H. Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, (2000).
- [4] T. Sasaki, J. Vac. Sci. Technol. B. 19, 963 (1981).
- [5] A. Yamada, SEMATECH Maskless Workshop 2005, available at http://www.sematech.org/.
- [6] P. Ware, *SPIE's OE Magazine* **2**, 26 (2002).
- [7] KLA Tencor, SEMATECH ML2 Workshop, (2008).
- [8] B. J. Kampherbeek and G. de Boer, SEMATECH ML2 Workshop, (2005).
- [9] PML2, SEMATECH ML2 Workshop, (2005).
- [10] M.-S. Su, K.-Y. Tsai, Y.-C. Lu, Y.-H. Kuo, T.-H. Pei, and J.-Y. Yen, Proc. SPIE 7637, 76371Q (2010).
- [11] L. R. Baylor, D. H. Lowndes, M. L. Simpson, C. E. Thomas, M. A. Guillorn, V. I. Merkulov, J. H. Whealton, E. D. Ellis, D. K. Hensley, and A. V. Melechko, *J. Vac. Sci. Technol. B* 20, 2646 (2002).
- [12] M. A. Guillorni, X. Yang, A. V. Melechko, D. K. Hensley, M. D. Hale, V. I. Merkulov, M. L. Simpson, L. R. Baylor, W. L. Gardner, and D. H. Lowndes, J. Vac. Sci. Technol. B 22, 35 (2004).
- [13] X. Yang, W. L. Gardner, L. R. Baylor, H. Cui, and D. H. Lowndes, J. Vac. Sci. Technol. B 25, 394 (2007).
- [14] S.-Y. Chen, H.-T. Ng, S.-Y. Ma, H.-H. Chen, C.-H. Liu, and K.-Y. Tsai, J. Vac. Sci. Technol. B 29, 06FD04 (2011).
- [15] P.W. Hawkes and E. Kasper, Principles of Electron Optics, Vol. 1, Academic Press, (1996).
- [16] L. P. Muray, C. S. Silver and J. P. Spallas, J. Vac. Sci. Technol. B. 24, 2945 (2006).

Thank you for your attention!