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Abstract

Acoustic well logging is important in oil exploration and development industry. Its simplified
theoretical model is a waveguide structure as a cylindrical borehole filled with fluid penetrating
a solid formation [Figure 1]. Nevertheless, unlike the traditional waveguide structure, the solid
formation extends to infinity, which complicates the problem. Recently, offshore development
adopts high angle wells to reduce drilling cost and these offshore reservoir formations often
exhibit strong anisotropy [1]. For such a deviated borehole model, numerical method is needed
to analyze the wave propagation.

The PDE interface of COMSOL Multiphysics® software was used to implement the 2.5D
method to investigate the wave propagation in a deviated borehole penetrating a transversely
isotropic formation. The variables in the model were the displacement potential in the fluid area
and the displacements in the solid area respectively [2]. Besides, a convolutional perfectly
matched layer [3, 4] was implemented, also using the PDE interface, to eliminate the reflections
from the artificial truncation boundary, which played a good performance.

The computations were conducted in the frequency-wave number domain, so the distribution of
modes could be found clearly in the direct computational results [Figure 2] and the phase
velocities of the modes could be obtained easily and accurately. Waveforms in time domain
[Figure 3] could also be obtained by Fourier and inverse-Fourier transform of the frequency-
wave number domain results. For a dipole source, we calculated the flexural modes for different
deviation angles and different dipole orientations [Figure 4]. The results show that for a deviated
borehole, the flexural mode split into fast flexural mode and slow flexural mode, the velocities
of which were about the SH and quasi-SV phase velocities of the formation respectively, at low
frequencies [5]. Both the hard and soft formation conditions were calculated. The value of error
was also presented, which show a high accuracy.

To sumup, in this paper, the 2.5D frequency-wave number domain method was used to

investigate the wave propagation in a deviated borehole penetrating a transversely isotropic
formation by means of the PDE interface of COMSOL Multiphysics® software. A
convolutional perfectly matched layer was implemented to absorb the reflections and simulate an
infinite solid area. The flexural mode in a deviated borehole was analyzed. The method used
here could be extended to other more complicated models with simple modification.
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Figures used in the abstract

Figure 1: Model of a deviated borehole penetrating a transversely isotropic formation.
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Figure 2: Flexural mode in the frequency-wave number domain.
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Figure 3: Waveform for different dipole source orientation.
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Figure 4: Flexural phase velocities.



