Spiral-tube Heat Exchange in COMSOL

 Kurt O. Lund, COMSOL consultant, 135 Sixth Street, Del Mar, CA 92014Stephen M. Lord, President, SML Associates, 109 Peppertree Lane, Encinitas, CA 92024

CLOSE-WOUND METAL COIL
 Axis-symmetric Core Convection Model

4" entrance turbulent jet exit at an 8 " orifice

solid conduction edge-region

Core Temperatures

Edge-Region Temperatures

Surface: Temperature (K)
$\times 10^{3}$
$=\left[\begin{array}{l}2 \\ 1.8 \\ 1.6\end{array}\right.$
1.2
0.8

Spiral Tube ID Model

distance along the coil, s

$$
\begin{gathered}
-A_{f} \frac{d p_{f}}{d s}=\tau_{w} P_{f} \quad \text { or } \quad \frac{d p_{f}}{d s}=-4 \tau_{w} / D_{H} \\
\tau_{w}=\left(\frac{1}{2}\right) \rho_{f} U_{f}^{2} C_{f} \quad C_{f}=r_{c s} 0.046 / R e_{f}^{0.2} \\
r_{c s}=1+0.11 R e_{f}^{0.23}\left(D_{H} / D_{C}\right)^{0.14} \approx 2.0
\end{gathered}
$$

heat balance yields

$$
\begin{gathered}
\frac{d\left(\dot{m} C_{p} T\right)_{f}}{d s}=q_{w} P_{f} \quad \text { or } \quad \dot{m} C_{p} \frac{d T_{f}}{d s}=q_{w} \pi D_{H} \\
\text { wall heat flux } \quad q_{w}=h_{f}\left(T_{w}-T_{f}\right)
\end{gathered}
$$

heat transfer coefficient is given by Reynold's analogy

$$
h_{f} /\left(\rho C_{p} U\right)_{f} \equiv S t \approx \frac{C_{f}}{2} \operatorname{Pr}^{-2 / 3}
$$

Axial Tube ID Integration

$\mathrm{s}=\left(\pi \mathrm{D}_{\mathrm{C}} / \mathrm{P}\right) \mathrm{x}$; therefore $\mathrm{d} / \mathrm{ds}=\mathrm{P} /\left(\pi \mathrm{D}_{\mathrm{C}}\right) \mathrm{d} / \mathrm{dx}$
$\frac{P}{\pi D_{C}} \frac{d p_{f}}{d x}=-4 \tau_{w} / D_{H}$
$\dot{m} C_{p} \frac{P}{\pi D_{C}} \frac{d T_{f}}{d x}=q_{w} \pi D_{H}$

$$
\mathrm{S}_{\mathrm{f}}=\mathrm{p}_{\mathrm{f}} / \mathrm{p}_{\mathrm{fin}}
$$

$$
\mathrm{R}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}} / \mathrm{T}_{\mathrm{fin}}
$$

$P \frac{d S_{f}}{d x}=-4 \pi\left(\tau_{w} / p_{f i n}\right) D_{C} / D_{H} \quad P \frac{d R_{f}}{d x}=\pi^{2} q_{w} D_{C} D_{H} / \dot{m} C_{p} T_{f i n}$

Shape Factor

Determine effective conductivity, k_{s} so the left-most temperatures are equal.

Tube Wall and Fluid Temperatures

Core Temperatures with Medium Radiation

OPEN-WOUND QUARTZ COIL

Radiation Properties

heat loss coefficient

heater temperature

 coefficientheater power

Fluid \& heater temperatures

CONCLUSION

- Coil Heat Exchangers with different length scales and processes were modeled with COMSOL; shape factors linked processes into a unified model.
- Combustion Example: core turbulent convection and radiation heat transfer were linked to the spiral flow.
- Electric-heater Example: complex radiation to bank of tubes was simplified to an overall heat transfer coefficient.

Thank you

