

Simulating Plasmon Effect in Nanostructured OLED Cathode Using COMSOL Multiphysics

Leiming Wang Konica Minolta Laboratory USA Inc.

10/08/2015

COMSOL CONFERENCE 2015 BOSTON¹

Konica Minolta OLED lighting

Flexible

10**R**

Thin

Lightweight

One piece of cutting-edge technology creates the future 0.06g/cm²

0.35mm

Konica Minolta OLED lighting

HLUS Research Div.

World's first all-phosphorescent Mass production for plastic : white OLED product" Symfos OLED-010K" flexible OLED lighting panel

flower illumination

3

Multilayer structure and light out-coupling of OLED

Typical power distribution spectrum of an OLED viewed in the k-space*

*Reineke et al., Rev. Mod. Phys. 85, 1245-1293 (2013)

Visualizing field distribution in OLED in real space

Visualizing field distribution in OLED in real space

SPP coupling is less for horizontally oriented dipole emission.

• No SPP coupling for *s*-polarized case in 2D.

Reducing waveguide mode by high index substrate

- P_y @ 475 nm.
- Strategy of enhancing light extraction efficiency of OLED:

plasmon mode \rightarrow waveguide mode \rightarrow substrate mode \rightarrow air mode.

HLUS Research Div.

KONICA MINOLTA

Reducing SPP coupling by nanograting electrode

HLUS Research Div.

ΚΟΝΙζΛ ΜΙΝΟΙΤΛ

Reducing SPP coupling by nanograting electrode

- Simplified model Ag/EML two layer.
- P_v @ 535 nm.

HLUS Research Div.

• Grating: $\lambda_{G} = 100 \text{ nm}$, L = 50 nm, h = 50 nm, d = 50 nm, $\Delta x = 0$.

Reducing SPP coupling by nanograting electrode

3D capable, but memory intensive and time-consuming

Power flow analysis

HLUS Research Div.

Plasmon loss (%) = $P_{plasmon}/P_{total}$

11

Total emission power

HLUS Research Div

 Total emission power correlates with the decay rate of the molecular emitter and the internal quantum efficiency (IQE) of OLED.

 For all-phosphorescent OLED, the IQE is ~100%; only the percentage of plasmon loss is concerned.

Plasmon loss – vertical dipole

P_v @ 535 nm

Plasmon loss – horizontal dipole

P_x @ 535 nm

Effect on emission pattern

- P_y @ 535 nm.
- $\Delta x = 0$, d = 50nm, h=50nm, L/ $\lambda_{G} = \frac{1}{2}$.
- Large grating may lead to structured directional emission.
- Subwavelength grating metasurface.

Parametric study

- Relative ratio of plasmon loss grating with respect to flat.
- $\lambda_{\rm G} = 100$ nm, d = 50 nm.
- Average of 2 horizontal positions: $\Delta x = 0$, $\Delta x = \lambda_G/2$.
- Average of P_x and P_y .
- Average of 3 emission wavelength: 475 nm, 535 nm, 625nm.
- COMSOL Multiphysics® Cluster Sweep parallel!

□ Mode distribution and plasmon coupling effect in OLED were modeled using COMSOL Multiphysics[®], which can simulate the optical effect caused by arbitrary subwavelength nanostructures.

□ Reduction of plasmon loss in OLED by ~ 50% over broadband emission is promising by nanostructured metal cathode.

Acknowledgement

HLUS

Dr. Jun Amano Dr. Po-Chieh Hung

Stanford University

Prof. Mark Brongersma Mr. Majid Esfandyarpour

Konica Minolta Inc. (Japan)

Mr. Toshihiko Iwasaki Mr. Masahiro Imada OLED group Simulation group

Thank you for attention