

Piergianni Geraldini Sogin Spa – Mechanical Design Department Via Marsala 51, 00185 Rome – Italy, geraldini@sogin.it

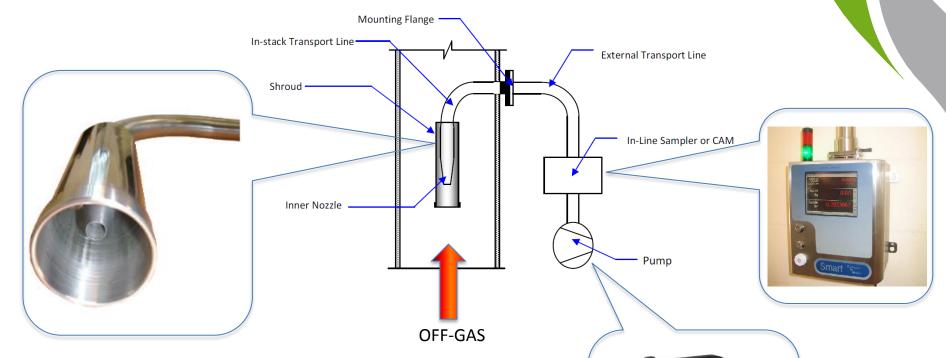
Presentation outline

- Introduction
- Sampling scheme
- ISO 2889 requirements
- Simulations performed
- Equations and computational domain
- Numerical Experimental comparison results
- Commercial vs. New Concept probe
- Conclusions

Introduction

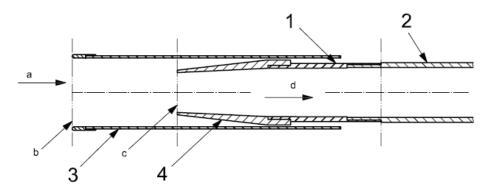
Nuclear facilities discharge the **off-gas** into the atmosphere and suitable monitoring and recording systems are required to protect the environment, workers and surrounding public.

The amount of **radioactive substances** (activity concentration) released from the stack has to be measured. A known sample amount (mass flow) is withdrawn from the stack and analyzed by Continuous Air Monitoring system. The **ISO 2889** provides performance-based criteria for the design and use of air-sampling equipment (including probes).


The aim of this study is to design a new concept of shrouded probe that:

- meets the ISO 2889 requirements;
- is suitable for small-ducts installation (up to 300 mm equivalent diameter);
- is constructed with standard stainless steel welding fittings manufactured (according to ASME/ANSI specifications) in order to reduce the manufacturing costs.

Sampling scheme


Definitions of "Isokinetic" and "Anisokinetic" (ISO 2889):

❖ Isokinetic is the condition that prevails when the velocity of air at the inlet plane of a nozzle is equal to the velocity of undisturbed air in a stack or duct at the point where the nozzle inlet is located

❖ Anisokinetic is the antonym of isokinetic. Sub-isokinetic refers to the condition where the nozzle inlet velocity is less than the free-stream velocity. Super-isokinetic refers to the condition where the nozzle inlet velocity is greater than the free-stream velocity.

ISO 2889 requirements

Nozzle design and operation for extracting aerosol particles:

 \checkmark A sampling nozzle should have a transmission ratio τ within the range of 0,80 to 1,30 during normal and accidental conditions for an aerosol with a particle aerodynamic diameter size *AED* of 10 μm;

✓ The presence of a nozzle should not disturb the aerosol particle concentration in the stack or duct. Accordingly, the frontal area of a nozzle should not be excessive (e.g. not greater than 15 % of the stack or duct cross-sectional area) and the inlet diameter should not be too small;

✓ The leading edge of the nozzle inlet should have a sharp edge and the external cone angle should not exceed 30°;

 \checkmark

Key

- 1 nozzle
- 2 transport line
- 3 shroud
- 4 inner nozzle
- a Stack gas flow.
- b Shroud entrance plane.
- c Nozzle entrance plane.
- d Sample flow to collector or monitor.

$$\tau = \frac{C_{pout}}{C_0}$$

$$= \left(\frac{N_{prout}}{N_0}\right) \left(\frac{U_0}{U_{pr}}\right) \left(\frac{A_0}{A_{pr}}\right)$$

 C_{pout} particle concentration at the nozzle outlet C_0 particle free stream concentration N_{prout} particle that reached the sampling section N_0 uniformly distributed in area A_0 U_0 free stream velocity U_{pr} mean velocity at the probe inlet A_{pr} cross sectional area of the probe inlet

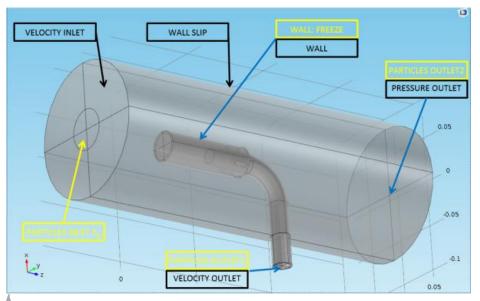
A₀ particle section inlet


Simulations performed

The simulation study is divided into two phase:

- Firstly they have been evaluated the capabilities of the numerical model to reproduce the available experimental data for a **commercial shrouded probe**;
- > secondly they have been investigated the performances of the new concept design.

Computations are carried out for free stream velocities in the range of 2 to 25 m/s and for particle size of 5, 10 and 15 μ m aerodynamic equivalent diameter (for the second phase).



Equations and computational domain

Governing equations:

$\nabla \cdot \boldsymbol{u} = 0$ $\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla)\boldsymbol{u} = \nabla \cdot [-p\boldsymbol{I} + \boldsymbol{\tau}]$ $\frac{d}{dt}(m_p \boldsymbol{v}) = \left(\frac{1}{\tau_n}\right) m_p(\boldsymbol{u}' - \boldsymbol{v}) + m_p \boldsymbol{g} \frac{(\rho_p - \rho)}{\rho_n} + \boldsymbol{F}_{brow}$

Boundary conditions:

SEGREGATED APPROACH

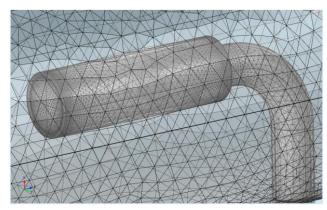
FLUIDYNAMICAL SIMULATION

COMSOL MODULE: HEAT TRANSFER

TYPE: STATIONARY

MODEL: TURBULENT FLOW K-EPS (WALL FUNCTION)
SOLVER: DIRECT, SEGREGATED, MUMPS

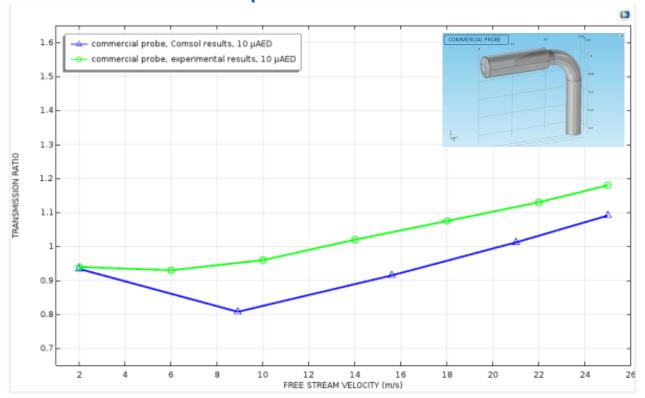
PARTICLE TRACING SIMULATION


COMSOL MODULE: PARTICLE TRACING

TYPE: TRANSIENT

MODEL: STANDARD DRAG CORRELATION + GRAVITY + BROWIAN

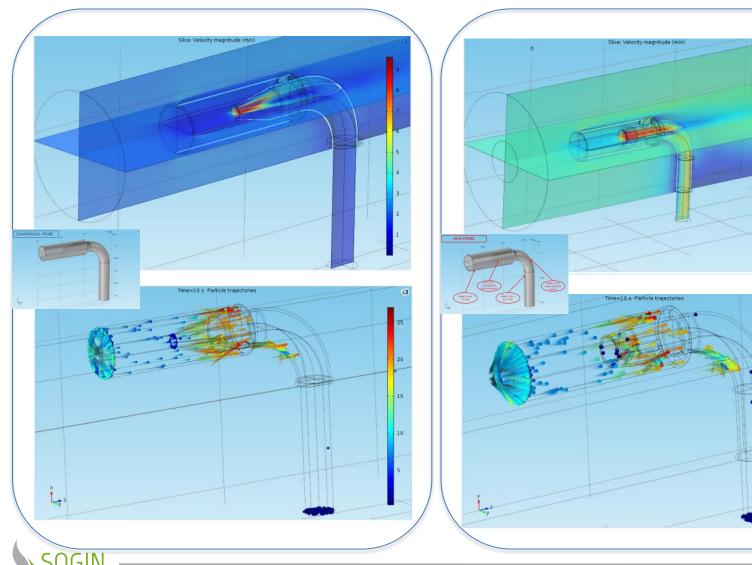
SOLVER: DIRECT, MUMPS, FULLY-COUPLED SOLVER


Mesh:

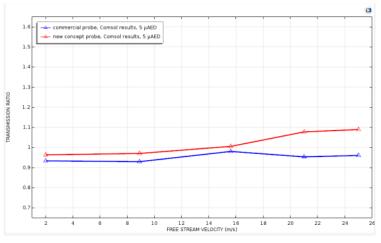
SOGIN

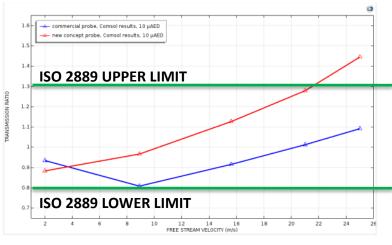
Numerical – Experimental comparison results

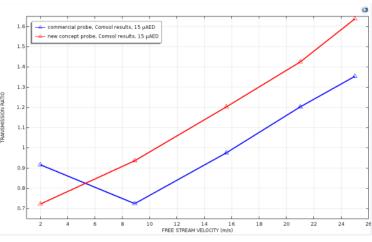
Capabilities of the numerical model to reproduce the available experimental data for a **commercial shrouded probe**:



It is evident that the numerically predicted transmission ratios compare well with the experimentally determined values. The maximum difference is less than 10%, probably due to conservative hypothesis of stick walls.


Commercial vs. New Concept probe (1/2)


Velocity field (2 m/s external flow) and comet tail diagram (25 m/s external flow, 10 μm AED)



Commercial probe vs. New Concept (2/2)

Comparison of transmission ratio for commercial probe and new concept probe for $5-10-15~\mu m$ aerodynamic diameter:

Conclusions

- the ISO requirements for the new concept probe are met except for external velocity flow greater than 20 m/s;
- the transmission ratio of the shrouded probes increases with both free stream velocity and particle size;
- the transmission ratio of new concept probe is slightly higher than the commercial except for low external velocity flow;
- the new concept probe seems to be less flexible than the other one and the variation of transmission ratio with the velocity is more evident;
- a sampling flow rate optimization study can be performed in order to modify the behavior of the new probe with a velocity.

Thank you for your attention!

