

Pressure Dependent Quality Factor of Micron Scale Energy
Harvesters

A.T. Brimmo, M.I. Hassan, A. N. Chatterjee

Tuesday, October 20, 2015 Version 1

Overview

- Problem statement
- Approach
- Experimentation
- Computational Model
- Validation
- Conclusion

Problem Statement

- Fluidic damping in piezoelectric based MEMs energy harvesters causes the device to loss harvested energy
- Fluidic damping is a function of cavity pressure
- Reducing cavity pressure comes at a cost
- Designers of micro cantilever energy harvesters (EH) need a tool
 which can demonstrate the effect of pressure levels on the degree of
 harvested energy (Q-factor) in an expedient manner.
- The explicit FSI approach (Navier Stokes Structural mechanics coupling) of modeling MEMs damping is very time intensive.

Approach

- To minimize result's turn-over time, Reynolds Equation (Lubrication theory) is coupled with the Structural Mechanics equations to model the effect of pressure on fluidic damping
- Two experimental setups (simple cantilever and complex structured magnetometer) are used to validate the model's accuracy
- A single mass cantilever EH model is used to compare results and computational time using COMSOL and ANSYS implicit and explicit FSI simulations

Simple Cantilever Resonator Experiments

Figure 1: Experimental setup for simple cantilever EH (Pandey et al.)

Simple Cantilever Resonator Model

Reynolds Equation:
$$\frac{\partial}{\partial t}(\rho \mathbf{h}) + \nabla_t \cdot (\mathbf{h}\rho v_{av}) = 0$$

$$v_{av} = \frac{1}{2} \left(\mathbf{v}_{w,t} + \mathbf{v}_{b,t} \right) - \left(\frac{h^2}{12\mu_{eff}} \right) \nabla_t \cdot P_f$$

$$\mu_{eff} = \frac{\mu}{1+9.638Kn^{1.159}} \quad \text{- Low pressure Regime (Kn } (\Lambda_0 / h) > 0.1)$$

Figure 2: Model setup for simple cantilever EH (Pandey et al.)

Mesh Sensitivity

Figure 3: Mesh sensitivity analysis for (a) Modal Fq (b) Q factor

Time Step Sensitivity Analysis

Figure 4: Mesh sensitivity analysis for (a) Modal Fq (b) Q factor

Model Time Stepping

Figure 3: Effect of time step and time step formulation on dynamic response of un-damped resonator

Simple Cantilever Model Validation: Q factor as Masdar a function of mode frequency

Pandey et al

Thin Film-Structural Dynamics model

Figure 5: Simple cantilever resonator validation: Modal Q factors

	Model's Resonant Fq (Hz)	Measured Resonant Fq(Hz)	Frequency's Percentage error	Model's Q Factor	Measured Q Factor	Q Factor Error
First Mode	50000	43000	16%	1.21	1.20	1%
Second Mode	290000	245000	18%	7.92	7.58	5%
Third Mode	790000	690000	14%	19.55	18.52	6%

Simple Cantilever Model Validation: Q factor as a function of cantilever length

Length Microns	Exper	iment	Q Model	%error
3	350	1.204819277	1.195057	-1%
3	300	1.5625	1.513789	-3%
2	250	2.487562189	2.419897	-3%
2	200	4	3.892728	-3%
1	150	7.042253521	7.26456	3%

Figure 6: Simple cantilever resonator validation (cantilever length)

Magnetometer Resonator Model

Figure 7: Magnetometer resonator model boundary conditions

MAGNETOMETER RESONATOR MODAL MODEL

Magnetometer Model Validation: Q factor as a function of Cavity pressure

Figure 9: Magnetometer resonator Q factor Validation

Single mass resonator model

Figure 10: Single Mass Cantilever Model

Single Mass Cantilever Models' Comparisons Masdar

Figure 11: Single Mass Cantilever Q factor Model

CONCLUSION

- Pressure dependent damping characteristics of MEMs resonator have been modeled using the Structural mechanics thin Film models coupling.
- The models were validated for modal, geometry and pressure dependent Q factor estimates
- These solutions are 15 times faster than explicit FSI simulations with only 7% deviation in Q factor calculations
- Care must be taken to ensure time stepping formulations are adequate and time step selections are strict to avoid numerical damping
- COMSOL and ANSYS estimates are identical but the COMSOL modeling approach presents many advantages for this type of model

Thank you!

