ÉCOLE DOCTORALE

Rémy Christin*,

Mikael Cugnet**, Nicola Zanon***, Giorgio Crugnola***, Pascal Mailley****

*R&D Batteries- Sodium-Nickel and new tech, **FIAMM** (Aubergenville, France)

Laboratory for Electrochemical Storage, **CEA (Le Bourget-Du-Lac, France)

R&D Batteries- Sodium-Nickel and new tech, **FIAMM** (Montecchio, Italy) *Laboratory of Chemistry for Materials and Interfaces, **CEA** (Grenoble, France)

Na-MCI₂ CELL MULTIPHYSICS MODELING: STATUS AND CHALLENGES

COMSOL

2015 GRENOBLE

CONFERENCE

23.5 cm

Imp 154 C - INES

Na-MCl₂ TECHNOLOGY (300 °C)

- Design and active materials
 - Clover-shaped beta alumina

3.5 cm x 3.5 cm

FROM RESEARCH TO INDUSTRY ceatech

Na-MCI₂ TECHNOLOGY (300 °C)

- **Design and active materials**
 - Clover-shaped beta alumina •

Additives

Secondary liquid electrolyte **NaAICI**

Discharge scheme

3.5 cm x 3.5 cm

positive: $MCI_2 + 2Na^+ + 2e^- \rightarrow M + 2NaCI$

$$\begin{array}{rl} MCI_{2(s)} + 2Na_{(l)} \rightarrow M_{(s)} + 2NaCI_{(s)} \\ M = & \text{Ni then Fe} \end{array}$$

FIAMM MIXED 40 Ah CELL

- Experimenal 40 Ah discharges from 270 °C for validation
 - Oven settings: temperature changes emanate only from the cell (increases during discharge)

Multi-physics Modeling of a Na-NiCl₂ Commercial Cell Comsol Conference Grenoble 15 octobre 2015 Rémy Christin | 4

FIAMM MIXED 40 Ah CELL

- Experimenal 40 Ah discharges from 270 °C for validation
 - Oven settings: temperature changes emanate only from the cell (increases during discharge)

Multi-physics Modeling of a Na-NiCl₂ Commercial Cell Comsol Conference Grenoble 15 octobre 2015 Rémy Christin |

2D MODEL IMPLEMENTATION

 Geometry, Meshing and Governing Equations (from seminal paper)

Casing domain

- Ohm's law in metal (Φ_1)
- Origin of potential $(\Phi_1 = 0V)$

Current collector

- Ohm's law in metal (Φ₁)
- Applied current (*I*_{exp}) on collector surface

Anodic domain

- Ohm's law in metal (Φ₁)
- Linearized Butler-Volmer on beta alumina external surface (i_N)

Solid electrolyte domain Ohm's law in electrolyte (Φ₂)

Cathodic region and felt

- Ohm's law in NaAlCl₄ (Φ_2)
- Ohm's law in metal backbone and carbon (Φ_1)
- Electrochemical reactions (j_i)

Porosity, volume fractions, exchange current densities • $\epsilon = 1 - \sum \epsilon_M - \sum \epsilon_{MCl2} - \epsilon_{NaCl}$ • $\frac{\partial \epsilon_{M/MCl2}}{\partial t} \propto j_M$ and $\frac{\partial \epsilon_{NaCl}}{\partial t} \propto j$ • \Rightarrow $j = j_{Ni} + j_{Fe}$

THERMAL IMPLEMENTATION

• From Li-ion cells studies^{1,2}, distributed heat sources flux can be expressed as:

BASELINE SIMULATION

40 Ah discharge at C/5, T_{initial} = 270 °C

The model is validated for this cell voltage and cell surface temperature simulation (relative error < 2 %</p>

BASELINE SIMULATION

- 40 Ah discharge at C/5, T_{initial} = 270 °C
 - Volume fractions of active materials with time

Fe contributes only if $U_{cell} < OCV_{Fe}$ (*T*)

Results at end of discharge are very closed to expected values from initial weights

→ a <u>diffuse</u> reaction front moves from the beta alumina towards the central collector

INFLUENCE OF THE THICKNESS OF THE SOLID ELECTROLYTE

- 40 Ah discharge at C/5, T_{initial} = 270 °C
 - Cell Voltage

Only the thickness of the beta alumina has been changed between simulations

➔ As expected, the model predicts less overall polarization with a thinner solid electrolyte

THANK YOU FOR YOUR ATTENTION

Alternative Energies and Atomic Energy Commission INES RDI | Savoie Technolac – BP332 – 50 avenue du Lac Léman F-73377 Le Bourget-du-Lac - FRANCE T. +33 (0)4 79 79 21 64 | Email : rémy.cristin@cea.fr Technological Research Division Solar Technologies Department Laboratory LSE

Public establishment with commercial and industrial character | RCS Paris B 775 685 019

INFLUENCE OF THE RATE

- 40 Ah discharge at C/2 and C/10 from 270 °C
 - Cell Voltage

Only the *I_{exp}* parameter has been changed from the reference simulation

\rightarrow The model is validated from C/10 to C/2 (error < 2%)

FIAMM ML3X GENERIC 40 Ah CELL

- C/2 40 Ah discharges from different initial temperatures
 - For experimental data, furnace is supplied by constant power, hence temperature changes emanate from the cell (increase during discharge)

munt-physics modering of a marmore continential cent comsol Conference Grenoble 15 octobre 2015 Rémy Christin | 13

INFLUENCE OF THE INITIAL TEMPERATURE

- 40 Ah discharges at different temperatures
 - Cell Voltage

Only the *T* parameter has been changed from the related simulation

→ The model is validated in terms of operational temperature. Temperature does not have a significant effect on the voltage curves

PREVIOUS WORKS

 Eroglu & West* (small modifications, isothermal)

Discharge $MCl_2 + 2e^- \rightarrow M + 2Cl^-$

$$j = \frac{exp^{\left(\alpha_{a}\frac{F}{RT}\eta\right)} - \frac{c_{r,b}}{c_{r,e}}exp^{\left(-\alpha_{c}\frac{F}{RT}\eta\right)}}{\frac{1}{i_{0}a_{m}} + \frac{1}{nFc_{r,e}}\left(\frac{1}{k_{m}a_{m}}\right)exp^{\left(-\alpha_{c}\frac{F}{RT}\eta\right)}}$$

Bulk: $X = Cl^- \text{ or } AlCl_4^$ $c_{[MX4]^{2-}} = c_{r,e} = \propto K_{sp,MCl2}$

*D. Eroglu and A. C. West, *Journal of Power Sources*, vol. 203, pp. 211–221, Apr. 2012

PREVIOUS WORKS

Orchard and Weaving implementation results

FIAMM MIXED 40 Ah CELL

- 40 Ah discharges from 270 °C
 - For experimental data, furnace is supplied by constant power, hence temperature changes emanate from the cell (increase during discharge)

PREVIOUS WORKS

Orchard & Weaving* (important model simplifications)

$$j = j_0 \left[e^{\left(\alpha_a \frac{F}{RT}\eta\right)} - e^{\left(-\alpha_c \frac{F}{RT}\eta\right)} \right]$$

$$j_0 = j_{0,ref} (1 - \text{DOD})^p$$

Discharge $MCl_{2(s)} + 2e^- + 2Na^+ \rightarrow M_{(s)} + 2NaCl_{(s)}$

<u>Solid state process</u>, eventual solubilities not taken into account (no mass transfer limitations) *p*: exponential term (= 2/3 assuming regular shaped particles, cubical or spherical)

 \rightarrow constant bulk composition (x_A cst)

*S. W. Orchard and J. S. Weaving, J Appl Electrochem, vol. 23, no. 12, pp. 1214–1222, Dec. 1993

REFERENCE SIMULATION CONSTANT OPERATIONAL TEMPERATURE

FROM RESEARCH TO INDUSTRY

Ceatech

- 40 Ah discharge C/5, 270 °C
 - Simulated ohmic resistance of the cell

INFLUENCE OF THE THICKNESS OF THE SOLID ELECTROLYTE

- 40 Ah discharge at C/5 @ 270 °C
 - Cell Voltage

Only the thickness of the beta alumina has been changed between simulations

→ As expected, the model predicts less overall polarization with a thinner electrolyte

INFLUENCE OF THE THICKNESS OF THE SOLID ELECTROLYTE

- 40 Ah discharge at C/5 @ 270 °C
 - Cell Voltage

Only the thickness of the beta alumina has been changed between simulations

REFERENCE SIMULATION CONSTANT OPERATIONAL TEMPERATURE

40 Ah discharge C/5, 270 °C

Ohmic loss in negative and charge transfer in negative contributions are surimposed on the cell voltage

From $U_{cell} = E^{\circ}_{Fe}$, displaying all the contributions is tricky because we don't know the mixed potential related to C/5, and charge transfer in positive is spatially inhomogeneous

FIAMM BETA ALUMINA RESISTIVITY

Relation implemented in the model (FIAMM data)

2D MODEL IMPLEMENTATION

 Solid-state mechanism and constant melt composition

Anodic domain

- Ohm's law in metal (Φ_1)
- Linearized Butler-Volmer on beta alumina external surface (i_N)

Solid electrolyte domain

• Ohm's law in electrolyte (Φ_2)

Cathodic region and felt

- Ohm's law in NaAlCl₄ (Φ_2)
- Ohm's law in metal backbone and carbon (Φ_1)
- Material balance $(\mathbf{x}_{\mathbf{A}})$
- Electrochemical reactions (j_i)
- Chemical reaction (ϵ_{NaCl})

Porosity, volume fractions, exchange current densities • $\epsilon = 1 - \sum \epsilon_M - \sum \epsilon_{MCl2} - \epsilon_{NaCl}$ • $\frac{\partial \epsilon_{M/MCl2}}{\partial t} \propto j_M$ and $\frac{\partial \epsilon_{NaCl}}{\partial t} \propto \frac{k_F}{p} j$ • $j = j_{Ni} + j_{Fe}$

SIMULATION ISOTHERMAL MODE

- 40 Ah discharge C/5, 270 °C
 - Cell Voltage

Na-MCI₂ TECHNOLOGY

General Principles

Ni based commercial solution Na-NiCl₂ OCV_{Ni} = 2.58 V @ $300 \,^{\circ}$ C