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Abstract

On the surface of an optical waveguide, there is an evanescent field. The evanescent field
decays fast and this steep gradient can be used to pull nano- and microparticles down towards the
waveguide surface. Radiation forces will propel the particle forward along the waveguide.
Trapping on an optical waveguide can be used to manipulate particles in a lab-on-a-chip system
where optical methods are also used to detect and characterize the particles. The particles are
normally submerged in water (acting as top-cladding) and various types of particles can be
trapped, e.g. gold nanoparticles [1], polystyrene microspheres [2, 3], nanorods [4], red blood
cells [5, 6], etc. Several types of optical functions have been demonstrated, e.g. for sorting and
steering particles [7], trapping in a gap [8], Raman-spectroscopy [9], etc.

Numerical simulations have been used to study the trapping process and to design new structures
for trapping. In this presentation, the method to calculate optical forces will first be reviewed.
Normally, optical forces are calculated directly from the Maxwell stress tensor. However, for
low index contrast, it can be advantageous to first calculate the optical pressure (Fig. 1) and then
integrate up the pressure to find the force. In the second part of the presentation, results will be
shown for several types of particles and structures, e.g. microspheres, red blood cells, straight
waveguide and a waveguide gap (Fig. 2). In addition to simulation of optical forces, it will be
shown how the transmitted amplitude and phase of the light in the waveguide is influenced by the
trapping of a particle. Some experimental results will be included.
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Figures used in the abstract
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Figure 1: Optical pressure and force density on a red blood cell that is trapped on the surface

of an optical waveguide. a) 3D-model. b) Narrow and d) wide waveguides. ¢) Cross-section of
waveguide.
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Figure 2: Field distribution (normE) in a 10 um gap between two waveguides, with a levitated
polystyrene sphere.



