Finite Element Model based Optimization of Pulsed Eddy Current Excitation Rise Time

N. N. Bharadwaj, V. Arjun, B. Purnachandra Rao Indira Gandhi Centre for Atomic Research, Kalpakkam, India

COMSOL CONFERENCE 2015 PUNE

Eddy Current Testing

Pulsed excitation

- \succ Rich in frequency content
- ➤ Wide depth of investigation
- \succ short duration
- ➢ high amplitude
- ➢ Reduced heating

Optimisation of pulsed eddy current probe for detection of

sub-surface defects in stainless steel plates

V. Arjun, B. Sasi, B. Purna Chandra Rao, C.K. Mukhopadhyay, T. Jayakumar

<u>Highlights</u>

- For effective detection of deeper defects, probe design plays a major role.
- •FEM based approach for optimizing probe configuration and dimensions.
- •Send-receive type ferrite cored probe of 19mm outer diameter shows better detection sensitivity.
- Experimental study also confirms its detection sensitivity for sub-surface defects.

For defect detection. Excitation characteristics of

the probe also play a crucial role.

Objective

- I: FEM of PEC
 - Optimization of rise time for enhancement in detection of defects in a SS plate of 5 mm,8 mm,10 mm and 12 mm thickness.
- II: Analysis using Frequency spectrum.
- III: Study of different conductivity specimens.

Modelling Study

Geometry

Typical Model

Number of meshes: 32489 Axi symmetry Magnetic insulation COMSOL Software Magnetic Field domain Transient time solving tool

Maxwell's Equation:

$$\nabla^2 \overline{A} = \mu \sigma \frac{\partial \overline{A}}{\partial t} + \mu \sigma \nabla V - \mu \overline{J} s$$

Simulation Results

m

As defect depth increases, peak amplitude decreases, time to peak increases and the difference (in pa & ttp) between successive defects also decreases.

So, the effect of rise time on the difference(in pa & ttp) is studied for enhanced defect detection.

Rise Time Study

SS plate (2.23 % IACS)

- In this study, pulse amplitude is fixed at 0.5 A.
- Pulse width is fixed at 150 % of rise time.
- Rise time is varied to examine the sensitivity parameters.
- <u>Rise times considered</u>:

<u>5 mm plate</u>: 100 μs, 200 μs, 400 μs, 800 μs, 900 μs.

<u>8 mm plate</u>: 200 μs, 400 μs, 800 μs, 900 μs, 1000 μs.

<u>10 mm plate</u>: 800 μs, 900 μs, 1000 μs, 1200 μs, 1500 μs.

<u>12 mm plate</u>: 1250 μs, 1500 μs, 1750 μs, 2000 μs, 2250 μs.

5 mm thick plate

Peak amplitude and time to peak variation with defect depth at different rise times

Peak amplitude reduces with increase in rise time. Time to peak increases with increase in rise time.

Difference variation with rise time

(Defect at 4 mm and defect-free plate)

Good difference is obtained in peak amplitude and time to peak at rise time of 400 μ s.

8 mm thick plate

Difference variation with rise time (Defect at 7 mm and defect-free plate)

Good difference is obtained in peak amplitude and time to peak at rise time of 800 μ s.

<u>10 mm thick plate</u> Difference variation with rise time (Defect at 9 mm and defect-free plate)

Good difference is obtained in peak amplitude and time to peak at rise time of 1200 µs.

<u>12 mm thick plate</u>

Difference variation with rise time (Defect at 11 mm and defect-free plate)

Good difference is obtained in peak amplitude and time to peak at rise time of 2000 μ s.

Optimised Risetime variation with specimen thickness

As specimen thickness increases, optimised risetime also increases.

Time Frequency Analysis

5 mm	4000 3500 3000 22000 1500 0 200 400 600 800 1000 rise time.µs	2.6x10 ⁴ 2.4x10 ⁴ 2.2x10 ⁴ 2.0x10 ⁴ 1.6x10 ⁴ 1.4x10 ⁴ 1.2x10 ⁴ 0 200 400 600 800 1000 rise time,µs	500 400 400 200 100 0 200 400 400 500 400 500 400 500 5
8 mm			Fines
10 mm	400 µs	800 µs	1200 μs

Used to find dominant frequency, time of occurrence of dominant frequency and its energy.

12mm:-2000 μs-279.01Hz,2.4002e-4J,.0011s.

Fmax(Hz)

3906.3

2256.3

1302.1

680.8

611.25

Fmax(Hz)

2170.1

1223.1

673.85

599.2

543.24

Fmax(Hz)

662.77

592.48

538.09

454.66

365.44

time(µs) 100

200

400

800

900

Rise

time(µs)

400

800

900 1000

time(µs)

800

900

1000

1200

1500

Emax(J)

2.5130e-4

2.0891e-4

1.6182e-4

1.1896e-4

1.1255e-4

Emax(J)

1.9795e-4

1.5694e-4

1.1732e-4

1.1123e-4

1.0599e-4

Emax(J)

5.8227e-5

5.5261e-5

5.2695e-5

4.8463e-5

4.3629e-5

Tmax(µs)

74.6

129.2

232.8

435.4

485.6

Tmax(µs)

131.4

`237.2

441.8

492.4

542.8

Tmax(µs)

443.75

495.4

545.2

646

797

Correlation of rise time with specimen thickness

Thickness	Rise time	Dominant freque	$\frac{\text{Skin depth}}{1/(\pi\mu\sigma f)^{1/2}}$
5 mm	400 µs	1302.1 Hz	11.97 mm) 2.39*thickness
8 mm	800 µs	673 Hz	→ 16.64 mm→ 2.08*thickness
10 mm	1200 µs	454.6 Hz	→ 20.25 mm→ 2.03*thickness
12 mm	2000 µs	279 Hz	→ 25.85 mm → 2.15*thickness

For any specimen thickness, the optimised rise time has dominant frequency that has skin depth at twice the specimen thickness.

Hastelloy Plate (1.5 % IACS) Difference variation with rise time

Optimum rise times obtained are 200 $\mu s,\,500$ μs and 1000 μs for 5 mm, 8 mm and 10 mm plates respectively.

<u>Aluminium plate (30 % IACS)</u> Difference variation with rise time

Optimum rise times obtained are 7 ms, 10 ms and 13 ms for 5 mm, 8 mm and 10 mm plates respectively.

Empirical Relation

<u>Optimum rise time</u> = $p_{00} + p_{10} * T + p_{01} * C + p_{20} * T^2 + p_{11} * T * C + p_{02} * C^2$ (T – Thickness; C – Conductivity)

 $p_{00} = -971.3;$ $p_{10} = 202.3;$ $p_{01} = 29.47;$ $p_{20} = -7.778;$ $p_{11} = 37.44;$ $p_{02} = 0.8302.$

Specimen	Conductivity(% IACS)	Thickness (mm)	Actual Rise time (μs)	Empirical Rise time(μs)	Error(%)
		5	200	172.623	13.69
Hastelloy	1.5	8	500	644.661	-28.93
		10	1000	881.573	11.84
	2.23	5	400	333.053	16.74
Stainless Steel		8	800	887.084	-10.89
		10	1200	1178.659	1.78
		5	7000	7093.03	1.33
Aluminium	30	8	11000	10766.19	2.13
		10	13000	13137.18	-1.06

Summary

- Pulsed eddy current rise time has been optimized for enhanced sub-surface defect detection in SS plate, Hastelloy plate and Aluminium plate of thickness 5 mm, 8 mm, 10 mm and 12 mm.
- An empirical relation is given for optimum pulse rise time as a function of specimen thickness and conductivity.
- Further, time-frequency analysis of the excitation signals revealed that the optimized rise time has dominant frequency that has skin depth at twice the specimen thickness.

THANKYOU