

THERMAL ANALYSIS OF A SEALED BATTERY POWER SYSTEM ENCLOSURE FOR UNDERWATER OPERATIONS

BATTERY POWER SYSTEM

- To power unmanned underwater vehicle
- Completely sealed
- Rugged and safe during operations
- LiFePO₄ battery cells
- Maximum Operating temperature of 50°C

BATTERY THERMAL THEORY

HIGH TEMPERATURE

- Faster chemical reactions
- More power to be extracted
- Improves electron and ion mobility
- Reduces cell's internal impedance
- Increasing cell's capacity

HIGHER TEMPERATURE

- At upper end of scale
- Irreversible chemical reactions
- Loss of electrolytes
- Permanent damage
- Complete failure

THERMAL RISKS

BATTERY OPERATING AT HIGH TEMPERATURES

- Swelling of cell due to expanding chemicals
- Chemical reactions speed up
- Pressure build up in cell well due to gas production
- Cell may rupture and explode

Burnt Batteries: http://www.komonews.com/news/boeing/Japan-787-probe-finds-thermal-runaway-in-battery-189836111.html

THERMAL RUNAWAY

- Destruction of battery by thermal energy
- Occurs when rate of heat generation has exceeded the battery's limitation
- Continuous degenerative cycle

Thermal Runaway : http://www.extremetech.com/extreme/208888-doping-lithium-ion-batteries-could-prevent-overheating-and-explosion

JOULE HEATING EFFECT

BATTERIES GIVE OFF HEAT VIA

- Thermochemical heating
 - Joule heating

RESISTIVE LOSS OR OHMIC HEATING

OCCURS WHEN CURRENT FLOWS THROUGH A RESISTIVE ELEMENT

$$Q_{Joule} = I^2 Ri$$

Where, / is the current (A) and Ri is the internal resistance of the battery (Ω).

CAD MODEL

- Designed in **SOLIDWORKS**
- Imported to **COMSOL Multiphysics**
- Symmetrical geometry Symmetry function in COMSOL
- Reduces memory usage and computation time

PROTOTYPE

HEAT TRANSFER

TIME DEPENDENT HEAT TRANSFER EQUATION

$$\rho C_P \frac{\partial T}{\partial t} + \rho C_P \boldsymbol{u} \cdot \nabla T = \nabla \cdot (k \nabla T) + Q$$

Where, ρ is the density (kg/m³), C_P is the heat capacity at constant pressure (J/kgK), T is the temperature (K), u is the velocity field (m/s), k is the thermal conductivity (W/mK) and Q is the heat source (W/m³).

FLUID FLOW

NAVIER-STOKES EQUATION FOR A COMPRESSIBLE NEWTONIAN FLUID

$$\rho\left(\frac{\partial \boldsymbol{u}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}\right) = -\nabla p + \nabla \cdot \left(\mu(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T) - \frac{2}{3}\mu(\nabla \cdot \boldsymbol{u})\boldsymbol{I}\right) + \boldsymbol{F}$$

Where, u is the fluid velocity field (m/s), p is the fluid pressure (Pa), ρ is the fluid density (kg/m³), μ is the fluid dynamic viscosity (Pa.s) and F is the volume force field (N/m³).

Each term of the equation represents the inertia forces, pressure forces, viscous forces and the external forces applied to the fluid.

FLUID FLOW

THE NAVIER-STOKES EQUATION REPRESENTS THE CONSERVATION OF MOMENTUM. THE CONTINUITY EQUATION REPRESENTS THE CONSERVATION OF MASS.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

Where, \boldsymbol{u} is the fluid velocity field (m/s) and ρ is the fluid density (kg/m³).

THERMAL SIMULATION

CAD model in COMSOL

MATERIALS USED

Material	Phase	Thermal Conductivity, k [W/mK]	Heat Capacity, C _P [J/kgK]	Density, [kg/m³]
Acrylic	Solid	0.18	1470	1190
Air	Liquid	Defined by piecewise functions, dependent on temperature		
Aluminum	Solid	238	900	2700
FR4 (Circuit Board)	Solid	0.3	1369	1900
LiFePO ₄ (Battery)	D ₄ y) Solid 1.58		1217	1950

THERMAL SIMULATION

BOUNDARY CONDITIONS

- Physics Conjugate heat transfer
- Time dependent
- Simulation time of 10800 seconds, 60 seconds step size
- Initial temperature 295 K
- Initial Pressure 1 bar
- Heat source 9.375 W
- Simulated effects of gravity natural convection

THERMAL SIMULATION

ASSUMPTIONS

- Non-essential structural components removed
- Battery cell treated as a homogenous model
- Electrochemical heat generation not considered
- Heat generation from wiring and circuit board is ignored

EXPERIMENT

RESULTS USED TO VALIDATE ACCURACY OF SIMULATION

EXPERIMENT

LOCATION OF THERMOCOUPLES

Thermocouple Measuring Points			
N.O.	Location		
1	PCB		
2	PCB Holder Plate		
3	Battery Cell 1		
4	Top of Battery Stack		
5	Battery Cell 6		
6	Between the Battery Stacks		
7	Between Battery Stack and Enclosure		
8	Top Plate		
9	Cover		
10	Air Temperature Inside the Enclosure		

THERMAL SIMULATION RESULTS

TO DETERMINE THE MAXIMUM TEMPERATURE AND DEFINE ITS LOCATION

Maximum Temperature = 29.3°C

THERMAL SIMULATION RESULTS

COMSOL CONFERENCE 2015 KUALA LUMPUR

EXPERIMENT RESULTS

TO VERIFY AND DETERMINE THE ACCURACY OF THE THERMAL SIMULATION

Maximum Temperature = 28.8°C

COMPARISON OF RESULTS

MAXIMUM DATA EXTRACTED FOR EACH DATA POINT

Data	Simulation	Experiment	Error	Error	Mean Error (%)	2.21
Points	(°C)	(°C)	(°C)	(%)	Standard Error of	
1	24.2	23.5	0.7	3.0	the Mean (%)	0.35
2	24.2	23.9	0.3	1.3		
3	27.1	26.4	0.7	2.7	Squared Error (%)	2.45
4	29.3	28.8	0.5	1.7		
5	27.1	26.4	0.7	2.7		
6	28.0	27.9	0.1	0.4		
7	28.3	27.6	0.7	2.5		
8	25.9	25.2	0.7	2.8		
9	22.5	22.7	0.2	0.9		
10	25.1	24.1	1.0	4.1		

Marginal and acceptable error

COMPARISON OF RESULTS

MAXIMUM TEMPERATURE – POINT 4

School of Engineering TEMASEK POLYTECHNIC

Method	Temperature		
Simulation (°C)	29.3		
Experiment (°C)	28.8		
Error (°C)	0.5		

SUMMARY

- Maximum temperature during discharge cycle is lower than the safe working temperature of 50°C
- Battery power system capable of operating continuously for 3 hours without exceeding the temperature limit
- Validation of simulation results
- Capability of using the COMSOL simulation model for subsequent thermal simulations

FUTURE WORKS

- Implementation of thermal management via phase change material (PCM)
- Addition of temperature feedback control system

THANK YOU!

