Modeling of Electrochemical Reduction of CO_{2} to Methanol in a Micro Flow Cell

Yosra Kotb ${ }^{1}$, Seif-Eddeen K. Fateen ${ }^{1}$, Jonathan Albo², Ibrahim Ismail ${ }^{1}$
${ }^{1}$ Renewable Energy Engineering Program, Zewail City of Science and Technology, Egypt
${ }^{2}$ Department of Chemical Engineering, University of the Basque Country, Spain

Introduction

- Fossil fuels depleted at a rate of 4 billion tons a year
- CO_{2} levels spiked up from 280 ppm to 400 ppm nowadays
- To reduce climate change effect: decrease the CO_{2} emissions by 50% by 2050 !

Global energy consumption 2014

Introduction

- Methanol Based Economy

Scope of Work

1- An electrochemical micro flow cell of CO_{2} reduction to methanol modeled using COMSOL Multiphysics

2- Model validated against experimental data
3- Model used to determine different operating conditions effects and optimize the cell performance

Schematic of Cell and Reactions

Anode $\quad 5 \mathrm{H}_{2} \mathrm{O} \rightleftarrows 2.5 \mathrm{O}_{2}+10 \mathrm{H}^{+}+10 \mathrm{e}^{-}$

Methodology

Physical interactions inside the cell

Mass Transport
Electrolytic species concentration

Charge Transport

Electric and ionic potential

Methodology

Governing Equations

Methodology

Electrochemical Reaction Kinetics

Cathode	Anode
Methanol and Carbon monoxide	
reactions	

COMSOL Implementation

- Module

Electrochemistry

- Interfaces

Tertiary current distribution for electrolytes channels Secondary current distribution for membrane

- Mesh

User controlled mesh (Mapped Distribution)

Results and Discussion

- Base Case

Results and Discussion

- Base Case

Results and Discussion

- Base Case

Electrolyte current density vector ($\mathrm{A} / \mathrm{m}^{2}$)

Results and Discussion

- Methanol Flow Behavior

\square

Methanol convective flux is 100 times its diffusive flux

Reconsidering membrane function in the cell

Model Validation

Flowrate Effect

—Experiment -Model

—Experiment —Model

Model Validation

Applied Cathode Potential Effect

—Experiment -Model

—Experiment —Model

Conclusions and Next Steps

- Model showed good agreement with the experimental results
- Other by products reactions to be added at the cathode \rightarrow decrease the discrepancy in the current density values
- As the model predicted, preliminary experimental results without the membrane proved that the methanol outlet concentration is not greatly reduced \rightarrow a more effective cell design will be adopted
- Further modeling and experimental studies \rightarrow enhance process feasibility and decide on the optimum operating conditions
- Thorough thermodynamic analysis \rightarrow investigate the whole process's energy efficiency and reduce the energy waste

Thank you for you attention!

Questions?

