COMSOL CONFERENCE 2016 MUNICH

Modeling of Electrochemical Reduction of CO₂ to Methanol in a Micro Flow Cell

Yosra Kotb¹, Seif-Eddeen K. Fateen¹, Jonathan Albo², Ibrahim Ismail¹

¹ Renewable Energy Engineering Program, Zewail City of Science and Technology, Egypt

² Department of Chemical Engineering, University of the Basque Country, Spain

Introduction

- Fossil fuels depleted at a rate of 4 billion tons a year
- CO₂ levels spiked up from 280 ppm to 400 ppm nowadays
- To reduce climate change effect: decrease the CO₂ emissions by 50% by 2050!

Introduction

Methanol Based Economy

The methanol-based economy cycle model (J.Albo, M. Alvarez-Guerra, P. Castaño and A. Irabien, 2015)

Scope of Work

1- An electrochemical micro flow cell of CO_2 reduction to methanol modeled using COMSOL Multiphysics

2- Model validated against experimental data

3- Model used to determine different operating conditions effects and optimize the cell performance

Schematic of Cell and Reactions

$$\begin{bmatrix} CO_2 + 6H^+ + 6e^- \rightleftharpoons CH_3OH + H_2O \\ CO_2 + 2H^+ + 2e^- \rightleftharpoons CO + H_2O \\ 2H^+ + 2e^- \rightleftarrows H_2 \end{bmatrix}$$

Anode $5H_2O \rightleftharpoons 2.5 O_2 + 10H^+ + 10e^-$

Cell configuration and geometry

Methodology

Physical interactions inside the cell

Methodology

Governing Equations

7

Methodology Electrochemical Reaction Kinetics

Cathode	Anode
Methanol and Carbon monoxide reactions	OER
$i_{loc} = i_0 [C_R \exp(\frac{\alpha_a F \eta}{RT}) - C_O \exp(\frac{-\alpha_c F \eta}{RT})]$	$i_{loc} = i_0 \left(\frac{(\alpha_a + \alpha_c)T}{RT} \right) \eta$
$HER i_{IOC} = i_0 \left(\frac{(\alpha_a + \alpha_c)F}{RT} \right) \eta$	

COMSOL Implementation

• Module

Electrochemistry

Interfaces

Tertiary current distribution for electrolytes channels Secondary current distribution for membrane

• Mesh

User controlled mesh (Mapped Distribution)

Methanol concentration (mol/m³)

• Base Case

Base Case

Base Case

Methanol Flow Behavior

Model Validation

Flowrate Effect

Model Validation

Applied Cathode Potential Effect

Conclusions and Next Steps

- Model showed good agreement with the experimental results
- Other by products reactions to be added at the cathode \rightarrow decrease the discrepancy in the current density values
- As the model predicted, preliminary experimental results without the membrane proved that the methanol outlet concentration is not greatly reduced → a more effective cell design will be adopted
- Further modeling and experimental studies →enhance process feasibility and decide on the optimum operating conditions
- Thorough thermodynamic analysis \rightarrow investigate the whole process's energy efficiency and reduce the energy waste

Thank you for you attention!

Questions?