

Model of microwave assisted thermal adhesion of synthetic leather to a plastic substrate

Sergey Soldatov¹, Jens Meiser², Benjamin Lepers¹, Guido, Link¹ and John Jelonnek¹

¹IHM, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany ²Carl Meiser GmbH & Co. KG, Stadionstr. 75, 72461 Albstadt, Germany

Outline

- Motivation
- Materials dielectric characterization
- Electromagnetic modelling
- Heat transfer model (COMSOL)
- Optimization
- Conclusions

http://www.frimo.com/de/produkte

Motivation

HEPHAISTOS Oven

http://www.voetschovens.com/en/products/industrial_micr owave_system/schunk01.c.59509.en

Heat balance

Materials dielectric properties versus temperature

Materials:

- → <u>Adhesive</u>: Hot melt polyurethane (HMPUR) blended by carbon particles
- → **Substrate**: ABS-PC
- → <u>Coating</u>: artificial PVC leather with textile layer at wrong side

Materials were characterized with cavity perturbation method and within working temperature range

→ Absorption of microwaves in adhesive is predominated!

Electromagnetic Modelling (CST µwave Studio.)

→ The aim – to find dielectric heat sources in every material

Geometry of task.

Coating-glue-substrate sandwich

Absorbed microwave power density.

Heat transfer problem (COMSOL®)

S. Soldatov, Model of microwave assisted thermal adhesion of synthetic leather to a plastic substrate, COMSOL Conference, München, 2016 8 21.10.2016

Geometry

The glue is patterned to cover a selected percentage of surface. Restrict a geometry to a single glue volume. Neglect the influence of neighboring glue volumes.

Heat transfer model (COMSOL®)

10 21.10.2016 S. Soldatov, Model of microwave assisted thermal adhesion of synthetic leather to a plastic substrate, COMSOL Conference, München, 2016 Institute for Pulsed Power and

Properties of materials in the model

Domain name	Density ρ [kg/m ³]	Specific heat $c_{p,}$ [J/kg/K]	thermal conductivity <i>k</i> [W/m/K]	Latent heat [J/kg]	Thickness along Z [mm]
PVC dense [7]	1200	1800	0.15		0.2125
PVC foam	800	900	0.10		0.2125
Interlaced yarns [8]	200	1200	0.04		0.475
Glue [5]	950	15001700	0.19	5*10 ⁴	0.35
Substrate (ABS)[6]	1080	1300	0.19		2.5
Air	1	1000	0.026		0.35

Heat transfer model with COMSOL[®] (II)

12

21.10.2016

∆t_{HEAT}=102 s h=7 W/K/m² (natural convection) p_{abs} =2.5... 15 MW/m³ k_{interlaced yarns}= 0.04 W/m/K

- → Model describes satisfactory the experiment
- → Note: thermocouples are slow as compared with "ideal" temperature in the model

Optimization of process

Optimization: absorbed power and surface cooling

reference case

optimized

Optimization: heat conductivity of textile layer

Temperature gradient is more dependent on the absorbed power in glue, *p_{glue}*.
The heating time is dependent both on k and *p_{glue}*

Coating of a cover of the glove box of Land Rover

Conclusions

- Microwave assisted bonding of PVC artificial leather to the plastic substrate is possible but requires the optimization of the process and materials.
- Such an <u>optimization is inevitable without numerical</u> <u>modelling</u> which gives us the understanding how and where the energy is absorbed, how it is transferred and dissipated in materials.
- Optimization of

absorbed microwave power (loss factor of glue), heat sink at the leather surface and fabric layer insulating properties allow to reach the melting temperature in the hot-melt glue

keeping the coating material below its damage temperature.

Thank you for your attention!

ACKNOWLEDGMENTS

This research is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) within the funding action "Zentrale Innovationsprogramm Mittelstand (ZIM)" under funding number KF3158002CJ3.

18 21.10.2016

S. Soldatov - Microwave assisted bonding of synthetic leather to plastic substrates, 3GCMEA Cartagena (Spain), 25-29 July 2016

