Electron Beam Crystallization of Amorphous Silicon Thin Films

Stefan Saager

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology (FEP) Winterbergstrasse 28, Dresden, Germany Stefan.Saager@fep.fraunhofer.de

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP

Outline

- Motivation
- Methods and numerical model
- Results and Discussion
- Conclusion and Outlook

kerfless = no material waste + very thin wafers = long-term future technology

© Fraunhofer FEP

Motivation

- kerfless wafering Technologie am Fraunhofer FEP -

Methods and Numerical Model

using a-Si coated Si-Wafers

electron beam line scribing with different line scanning speed

Methods and Numerical Model

For temperature field - solving 3D heat equation $c_p(T)\rho(T)\frac{\partial T(\vec{r},t)}{\partial t} - \nabla[\lambda(T)\cdot\nabla T(\vec{r},t)]$

$$= p_A(\vec{r}, t) - \rho(T) \frac{\partial h_{\text{fus}}}{\partial t}$$

$$p_A(\vec{r}, t) = \eta_{th} U_B \cdot j_B(x, y, t) \frac{f_A(z)}{R_e}$$

$$e_A(x, y) = \frac{1}{R_e} \iint p_A(\vec{r}, t)$$

$$P_A(\vec{r}, t) = \eta_{th} U_B \cdot j_B(x, y, t) \frac{f_A(z)}{R_e}$$

$$\forall \vec{r} \in \mathcal{K}$$

$$-\lambda(T) \cdot \vec{n} \cdot \nabla T(\vec{r}, t) = \varepsilon(T) \cdot \sigma_{SB}(T_U^4 - T^4), \quad \forall \vec{r} \in \partial \mathcal{K}$$

For stress field – considering thermal and initial stress $\hat{\sigma} = \hat{\sigma}_{ini} + \hat{C} : \hat{\epsilon}^{\sigma}$ $w_{\sigma} = \frac{1}{2} \cdot \int_{-\infty}^{u} \hat{\sigma} : \hat{\epsilon}^{\sigma} \, \mathrm{d}z$

$$\hat{\epsilon}^{\sigma} = \hat{\epsilon} - \hat{\epsilon}_0 - \hat{\epsilon}^{\rm th}$$

$$\hat{\epsilon}^{\text{th}} = \hat{\alpha}(T) \cdot (T(\vec{r}) - T_{\text{ref}})$$

$$f_B$$
 electron beam
current density
 $dt dz$
 f_F electron beam
diameter
 $3 \cdot 10^{14}$
 f_F up 10
 $3 \cdot 10^{14}$
 f_F up 10
 f_F up 10

=

Experimental Results

- line scribing on a-Si coated Si-Wafer by electron beam-

- layer delamination at certain areas for $v_y \ge 50$ m/s and $e_A \le 7$ kJ/cm³, resp.
- still attached layer regions are still amorphous
- detached layer regions shows a fine grained structure with long crystallites and with random crystal orientation

 <u>Accessed and Structure S</u>

Numerical Results

ightarrow No crystallization phenomena would be expected

Numerical Results

- simulation of the thermal stress field -

- Initial tensile layer stress σ_{ini} will be compensated by compressive thermal stress
- maximum stress value of the σ_{yy}-component shows little variation in the a-Si layer
- → Delamination phenomena can not be explained

Numerical Results

areal elastic strain energy density

$$w_{\sigma} = \frac{1}{2} \cdot \int_{0}^{d} \hat{\sigma} : \hat{\epsilon}^{\sigma} \, \mathrm{d}z$$

- Rising elastic strain energy desisty w_{σ} with increasing absorbed electron beam energy e_A
- Layer delamination will be expected if the stored mechanical energy exceeds the interface energy.

This is the case for

 $v_y \ge 50 \text{ m/s}$ and $e_A \le 7 \text{ kJ/cm}^3$, respectively

plausibel reason for layer delamination phenomena

Experimental Results

- additional crystallization tests with extended scanning pattern -

- Slowly heating up the whole sample to the maximum of $T_{\rm max} \approx 1500 \text{ K}$
- No layer delamination observed !
- layer crystalizes with the same (001) crystal orientation from Si-substrate

→ epitaxial solid phase crystallization

glowing sample during electron beam processing

applied scanning pattern with high repletion rate at lower EB power line pitch $\ll d_F$

Conclusion and Outlook

- electron beam treatment on a-Si coated Si-substrates
 - > epitaxial regrowth to (001) crystal orientation from Si-substrate
 - Increasing EB power density for enhancing throughput → layer delamination Reason???
- COMSOL® simulation
- → accumulation of strain energy up to interface energy
 → simulation results agree very well with experiment
- with FEM simulations \rightarrow an efficient process optimization is possible
 - \rightarrow undetectable process states can be find out
 - → unexplainable processes phenomena can be understood
- Further working tasks \rightarrow further process optimization
 - → determine process limits for enhancing throughput
- Fraunhofer mission
 - ➔ enhancing of competences for the simulation of thermal and mechanical processes
 - ➔ looking for project partners for extending further systematical studies

y x

Thank you very much for your attention !

The author gratefully acknowledges Prof. Dr. Chr. Metzner, Prof. Dr. J. Weber, Dr. J.-P. Heinß and Dr. D. Temmler for supervising and supporting as well as Prof. Dr. E. Hieckmann for supporting EBSD-analysis. The project was funded by the European Union and the Free State of Saxony (funding reference 100102018).

References:

[Bodenstein 2015]: Bodenstein & Temmler, in Proc. of the 31st EU PVSEC, Hamburg, 3DV.2.8,2015, 2015

[Heinß 2015]: Heinß, Pfefferling, Saager & Temmler, in Proc. of the 31st EU PVSEC, Hamburg, 3DV.2.1, 2015.

[Saager et al., 2014]: .Saager, Ben Yaala, Heinß, Metzner, Pfefferling & Temmler, in Proc. of 29th EU PVSEC Amsterdam, 3DV.4.13, p. 1900, 2014.

[Temmler et al.,2014]: Temmler, Bedrich & Saager, Patent WO2014/117890A1, 2014.

[Brodsky et al. 1974]: Brodsky, Kaplan & Ziegler, Applied Physics Letters, vol. 21, no. 7, pp. 305-307, 1972.
 [Metzner et al., 2015]: Metzner et al., Novel Method for the Production of Thin Silicon Wafers, FEP Annual Report 2014/15, p.16-19, 2015.

Image References (19.11.2015)

- [a] <u>http://www.silfex.com/products_2_0.html</u>
- [b] <u>http://www.udo-leuschner.de/basiswissen/SB110-05.htm</u>
- [c] <u>http://www.pv-tech.org/news/tool_order_meyer_burger_receives_first</u> <u>technology_buy_contracts_in_2_years</u>
- [d] <u>http://www.wirautomatisierer.de/image/image_gallery?img_id=34993854</u>
- [e] <u>http://www.meyerburger.com/it/produkte-systeme/industrien/photovoltaik</u> /wafer-multi/
- [f] <u>http://www.businesswire.com/news/home/20090304005822/de/</u> //http://www.sigen.com/
- [g] <u>https://upload.wikimedia.org/wikipedia/commons/f/f1/Vergleichsspannung.gif</u>

