

Calculation of HF Eigenmodes in Liquid Rocket Combustion Chambers

COMSOL Application R. Kaess, J. Braun, S. Koeglmeier

___ AIRBUS SAFRAN _____ LAUNCHERS

Thermo-Acoustic Combustion Instability in Rocket Engines

Comsol Calulation

Summary

2

Thermo-Acoustic Combustion Instability in Rocket Engines

Rocket Engines

4

How does it work?

http://www.nasa.gov/images/content/148709main_d4_testing_08.jpg, (accessed on 07.09.2016)

http://www.nasa.gov/images/content/148709main_d4_testing_08.jpg, (accessed on 07.09.2016)

http://www.nasa.gov/images/content/148709main_d4_testing_08.jpg, (accessed on 07.09.2016)

AIRBUS SAFRAN LAUNCHERS

http://www.nasa.gov/images/content/148709main_d4_testing_08.jpg, (accessed on 07.09.2016)

http://www.nasa.gov/images/content/148709main_d4_testing_08.jpg, (accessed on 07.09.2016)

AIRBUS SAFRAN LAUNCHERS

Flowrates and Pressure Levels

Jet d'eau, Geneve: 500l/s, 16bar, 140m

Thermal Power

Neckarwestheim: 1400 MW

Temperatures

11

2 x Melting Point of Steel

Velocities

12

Approx. 4000m/s \rightarrow 4 x A12 maximum speed

- Application at the physical limits
- Large quantities of energy present
- Limited margins against failures
- Small deviations can have catastrophic effects

→ Need for a safe, smooth, robust mode of operation

Combustion chamber acoustics conserve pressure and velocity fluctuations

Combustion chamber acoustics conserve pressure and velocity fluctuations

Combustion process is sensitive to pressure and velocity fluctuations

and pressure fluctuations

Combustion instability oscillating in the combustion chambers acoustic eigenmodes

Influence parameters and counter-measures:

- Combustion chamber geometry and hot gas determine the eigenfrequencies
- Propellant combination has tremendous influence on the risk of instabilities
- Proper design of Injection system reduces risk
- · Stabilization devices can be used

18

Knowledge of the acoustic eigenfrequencies is required

Evaluation of off-the-shelf-COMSOL modules w/o modifications

Features to be considered

- Presence of mean flow (non-negligible Ma-Number)
- Presence of gradients
- (Presence of absorbers or baffles)

Stepwise approach with increasing complexity

The results have been de-dimensionalized for confidentiality reasons

2 Comsol Calculations

Eigenfrequencies of a 2D Duct with and w/o mean flow

Analytic solution:

$$\omega_{lm} = c\pi \sqrt{\left(\frac{l}{L}\right)^2 + \left(\frac{m}{H}\right)^2} = c\sqrt{\alpha_l^2 + \beta_m^2}$$

Eigen mode	Analytic solution		
Mach	0	0.2	
L1	114.3	109.8	
L2	228.7	219.5	
L3	343.0	329.3	
T1L1	361.6		
T1L2	412.2		

Eigenfrequencies of a 2D Duct with and w/o mean flow

Physics module: *Linear Euler, Frequency Domain*

Acoustic source:

Domain Source

Study: Frequency Domain Direct solver: MUMPS

Mesh:

Quadrilateral mapped mesh Max. element length: 0.025m

Eigen mode	Analytic solution		COMSOL (Step: 0.25Hz)	
Mach	0	0.2	0	0.2
L1	114.3	109.8	114.3	109.8
L2	228.7	219.5	228.8	219.5
L3	343.0	329.3	343.3	329.5
T1L1	361.6		361.8	353.5
T1L2	412.2		412.5	401.5

→ Set up is correct

AIRBUS SAFRAN LAUNCHERS

Physics module: *Linear Euler, Frequency Domain*

Boundary Conditions: Chamber wall and inlet: *Rigid wall* Chamber outlet: *Asymptotic farfield radiation + Outflow boundary*

Acoustic source: Domain Source

2 / Quiscent medium / uniform flow field

24

- Zero Mach number and homogeneous medium
- Simple, constant axial velocity (unphysical at nozzle)

Frequency shift and additional damping when mean flow is present

2 / Physical mean flow of hot gas

25

• COMSOL domain is truncated to keep Ma number below 1

 \rightarrow Damping increases, double peak reduces to single peak, some spurious oscillations

AIRBUS SAFRAN LAUNCHERS -

- COMSOL has been applied to calculate the acoustic properties of confined domains
- Cases with and without mean flow have been chosen
- The eigenfrequencies can be calculated using a domain source and a frequency sweep
- Mean flow increases damping and promotes spurious oscillations
- Frequency shift for mean flow can be observed