Finite Element Model of a Magnet Driven Reed Switch

Bryan M. LaBarge¹ and Dr. Ernesto Gutierrez-Miravete² ¹Gems Sensors and Controls, ²Rensselaer at Hartford

- Use COMSOL to predict and visualize a magnetic field
- Use further processing to determine field strength
- Correlate field strength to reed switch operation

Background

- Magnet/reed switch systems are used extensively for proximity sensing
- Ability to predict reed switch operation reduces testing time, time to market
- Knowing magnet strength at any point allows designer to focus on reed switch selection

What is a reed switch?

Governing Equations

• Maxwell's Equations

 $\nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0$

 $\nabla \times \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{J}$

• Magnetization Equation $\mathbf{B} = \mu(\mathbf{H} + \mathbf{M})$

Model Creation

- 2-D (*r*-*z* coordinate) magneto-static analysis
- Magnet centerline bounds model
- Magnet modeled as iron, bounded by air
 - **M** = 1.6x10⁵ A/m
 - Relative permeability (μ) = 4000
- Elements: 15,472 (triangular, 7859 nodes)
- Static, stationary solver
- Output = Gauss (*r*-, *z*-, normal direction)

Model Validation

• Magnet mounted to XY table, Gauss probe stationary, 3.9 mm parallel to magnet centerline

• Measurements taken every 0.3 mm

• Results plotted vs. COMSOL output

Procedure (in brief)

- Export COMSOL data to EXCEL
- Use EXCEL data as look-up table
- Calculate coordinates of switch movement along an arc
- Calculate magnetic field at coordinates using look-up table
- Determine switch operation

Procedure (continued...)

- COMSOL data exported to EXCEL
 0.3 mm resolution in (*x*, *y*) coordinates
- Magnet/Switch location measured relative to pivot point (origin)
- Open/closed positions of switch measured for later reference

Procedure (continued...)

- x_{\max} defines arc radius
- Coordinates calculated on 0.02 mm resolution in *x*-direction
- Coordinates are interpolated from the lookup table to assign Gauss values to points on the arc
- Arc coordinates/Gauss values become second look-up table

Results

- Reed switches are tested using a test coil, measuring operation in terms of Ampere-Turns (AT)
- AT = I n
- I = current; n = number of coil turns
- Test switch open/closed values:
 - Open = 29.1 AT
 - Closed = 18.7 AT

- Prior empirical testing shows Gauss/AT correlation
- G = 0.533AT 0.857
- Open = 14.7 G
- Closed = 9.12 G

- Model Verification
 - Red = COMSOL, Blue = Empirical

Results (continued...)COMSOL contour plot, normal direction

Results (continued...) COMSOL contour plot, *z*- direction

 Using the values of Gauss on switch arc and the Gauss values for switch operation, switch location can be interpolated.

• Example: 29 AT = 14.57 G = (15.47, 8.72) mm

• Actual switch points compared to calculated switch points

	x, closed	y, closed	<i>x</i> , open	y, open
Model	15.47	8.72	14.98	10.96
Observed	15.34	8.97	14.83	10.82
Error	0.84%	-2.87%	1.00%	1.27%

Conclusions

• COMSOL model agrees with empirical results to within 2%

• Increased error in *y* than *x* due to geometry

Conclusions

- Application requires 20° maximum angle, switch should operate at 10°
- Model says switch will open at 18.3° and close at 9.9°
- Decrease in AT on switch will close switch over full arc.

Conclusions

• Model is a simplification of actual system

• Further work can be done to model effects of reed blades

• Speaker's first COMSOL model