Presented at the COMSOL Conference 2008 Hannove

Sound Propagation through Circular Ducts with Spiral Element Inside

Wojciech ŁAPKA

POZNAŃ UNIVERSITY OF TECHNOLOGY Institute of Applied Mechanics Division of Vibroacoustics and Biodynamics of Systems Piotrowo 3 Street 60-965 Poznań POLAND

E-mail: Wojciech.Lapka@put.poznan.pl

COMSOL Conference 2008, 4-6 November 2008, Hannover, Germany

Presentation plan

- 1. Introduction
- 2. General assumptions
- 3. Model definition
- 4. Equations
- 5. Boundary conditions
- 6. Results and discussion
- 7. Summary

1. Introduction

This work presents results of computational modeling of a sound propagation through circular ducts with spiral element inside – it creates a similar solution to an Archimedean screw, which is a well-known technical solution for many applications (screw pump, screw conveyor, rotary feeder etc.),

Archimedean screw was historically used for transferring water from a low lying body of water into irrigation ditches.

1. Introduction

It's already proven in presenters past research work that inserting just one spiral turn at the inlet circular duct of a round silencer can improve the sound attenuation performance of this silencing system.

2. General assumptions

Three dimensional (3D) sound propagation without air flow in circular ducts with spiral element inside is numerically calculated by the use of COMSOL Multiphysics – Acoustic Module computational application.

Only transmission loss (TL) as an acoustical filter performance parameter is measured and in terms of the progressive wave components can be expressed as:

$$TL = 10\log_{10} \left| \frac{S_n A_n^2}{2} \frac{2}{S_1 A_1^2} \right|, \quad B_1 = 0$$

$$TL = 20\log_{10} \left| \frac{A_n}{A_1} \right|, \quad B_1 = 0.$$

$$B_n \leftarrow A_n \quad \text{Acoustical filter} \quad -A_1 \quad \text{anechoic termination}$$

Here S_n and S_1 denotes the cross-section areas of the exhaust pipe and tail pipe, respectively, which are equal in the experiments for transmission loss.

 A_n and A_1 are the incident (in the exhaust pipe) and transmitted (in the tail pipe) wave pressures, respectively. B_1 denotes the reflected wave pressure in the tail pipe. The anechoic termination ensures $B_1=0$ However, experimentally A_n cannot be measured in isolation from the reflected wave pressure B_n , computationally there is no difficulty.

3. Model definition

One spiral turn inside a circular duct:

Dimensionless ratios:

s/d = 2

$$d_{\rm m}/d = 0.24$$

g/d = 0.04

- s spiral lead, [m]
- d circular duct dimension, [m]
- d_m circular mandrel dimension (placed axially), [m]
- g thickness of the spiral profile, [m]

4. Equations

The problem is solved in the frequency domain using the time-harmonic Pressure Acoustics application mode. The final solving parameter is the acoustic pressure p [Pa], which can be computed by the use of slightly modified Helmholtz equation:

$$\nabla \cdot \left(-\frac{\nabla p}{\rho_0}\right) - \frac{\omega^2 p}{c_s^2 \rho_0} = 0$$

 $\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ - del operator in the three-dimensional Cartesian coordinate system,

 ρ_0 - density of air (ρ_0 =1,23 kg/m³), c_s - speed of sound in air (c_s =343m/s), ω - angular frequency [rad/s], ω =2 πf where f [Hz] is the frequency.

4. Equations

For computational needs, the transmission loss TL is expressed as the difference between the outgoing power at the outlet w_o and the incoming power at the inlet w_i :

$$TL = 10\log_{10}\left(\frac{w_i}{w_o}\right), [dB]$$

Each of component quantities in equation above are calculated as an integral over the corresponding surface $\partial \Omega$ of circular ducts cross-sections S_n and S_1 :

5. Boundary conditions

For investigated model the boundary conditions are of three types:

1. For acoustically hard walls at the solid boundaries, which are the walls of the spiral element profile, mandrel and circular duct, the model uses sound hard (wall) boundary conditions:

 $\left(\frac{\nabla p}{\rho_0}\right) \cdot \mathbf{n} = 0$ \longrightarrow **n** is the natural direction vector for investigated circular duct

2. The boundary condition at the inlet surface (sound source) of circular duct is a combination of incoming and outgoing plane waves:

$$\mathbf{n} \cdot \frac{1}{\rho_0} \nabla p + ik \frac{p}{\rho_0} + \frac{i}{2k} \Delta_T p = \left(\frac{i}{2k} \Delta_T p_0 + (1 - (\mathbf{k} \cdot \mathbf{n}))ik \frac{p_0}{\rho_0}\right) e^{-ik(\mathbf{k} \cdot \mathbf{r})}$$

where Δ_T denotes the boundary tangential Laplace operator, $k=\omega/c_s$ is the wave number, wave vector is defined as $\mathbf{k}=k\mathbf{nk}$, where \mathbf{nk} is the wave-direction vector, and \mathbf{r} is the source axis direction (ex. z=1)

5. Boundary conditions

3. At the outlet boundary is set the radiation boundary condition which allows an outgoing wave to leave the modeling domain with no or minimal reflections:

$$\mathbf{n} \cdot \frac{1}{\rho_0} \nabla p + i \frac{k}{\rho_0} p + \frac{i}{2k} \Delta_T p = 0$$

The numerical model is computed by the use of finite element method (FEM) by the terms of the element size and maximum element size equals

$$h_e = 0, 2(c_s / f_{max}),$$

where f_{max} is the value of maximum investigated frequency (here $f_{max}=2$ kHz)

6. Results and discussion

Transmission loss (TL) of the circular duct with spiral element inside with ratio s/d=2 for a frequency range from 10Hz to 2kHz with the computational step 10Hz.

- Maximum level of TL is about 42dB at the frequency 1270Hz,
- Sound attenuation considerably increases in a specified frequency range from about 1150Hz to about 1410Hz,
- Visible small growth (about 1dB) of the TL in low frequencies between about 150Hz and 550Hz,
- Variations of TL at frequencies higher than 1550Hz, what can be recognized as the influence of a transverse wave propagation in the circular duct.

6. Results and discussion

TL of the circular duct with spiral element inside with ratio s/d=2 for a frequency range from 1kHz to 1,6kHz with the computational step 1Hz.

- Maximum level of TL is about 60dB at the frequency 1271Hz, , which can be recognized as a resonance frequency of the spiral element,
- Sound attenuation considerably increases in a specified frequency range from about 1150Hz to about 1410Hz,
- Variations of TL at frequencies higher than 1550Hz, what can be recognized as the influence of a transverse wave propagation in the circular duct.

6. Results and discussion

Sound pressure level distribution at the resonance frequency 1271Hz of the spiral element inside a circular duct.

6. Summary

- This study introduced the problem of modeling acoustic wave propagation without air flow in spiral shaped elements placed inside circular ducts.
- Suitable change of dimensions and mutually dependent *s/d*, *g/d* and *d_m/d* ratios can improve the sound attenuation performance in determined frequency range for any kind of circular duct.
- Characteristic SPL distribution at the outlet of spiral elements is their property.
- Newly discovered acoustical properties of attenuating sound in specified frequency band of spiral elements are a solid base to consider this solution as applicable for industrial systems. It can be applied as an alternative substitution of Helmholtz resonator – well known acoustic band stop filter.
- Spiral elements used for attenuating sound in ducted silencing system still need a lot of research work, but already done researches expand a new scientific knowledge in the domain of ducts and mufflers.

6. References

- 1. Morse P.M., Vibration and Sound, 468, McGraw-Hill Book Company Inc., USA, New York (1948)
- 2. Munjal M.L., Acoustics of Ducts and Mufflers with Application to Exhaust and Ventilation System Design, 328, John Wiley & Sons Inc., Calgary, Canada (1987)
- 3. Rostafinski W., On the propagation of long waves in curved ducts, J. Acoust. Soc. Am., 52, 1411-1420 (1972)
- 4. Rostafinski W., Analysis of propagation of waves of acoustic frequencies in curved ducts, *J. Acoust. Soc. Am.*, **56**, 11-15 (1974)
- 5. Rostafinski W., Acoustic systems containing curved duct sections, J. Acoust. Soc. Am., 60, 23-28 (1976)
- 6. Łapka W., Acoustic attenuation performance of a round silencer with the spiral duct at the inlet, *Archives of Acoustics*, **32** (**4**), 247-252 (2007)
- Łapka W., Cempel C., Computational and experimental investigations of a sound pressure level distribution at the outlet of the spiral duct, *Proceedings of the 55th Open Seminar on Acoustics*, Wrocław - Piechowice, Poland, 175-180 (2008)
- 8. Łapka W., Cempel C., Noise Reduction of Spiral Ducts, *International Journal of Occupational Safety and Ergonomics (JOSE)*, **13 (4)**, 419-426 (2007)
- 9. Łapka W., Cempel C., Acoustic attenuation performance of Helmholtz resonator and spiral duct, *Vibrations in Physical Systems*, **23**, 247-252 (2008)
- Lapka W., Cempel C., Spiral waveguide and damper, Conference Guide and Abstracts of the 36th International Congress & Exhibition on Noise Control Engineering, Inter-Noise'07, 191-191, 8 pages on CD, Istanbul, Turkey (2007)

6. References

- 11. Łapka W., Cempel C., Insertion loss of spiral acoustic duct computational modeling, *Proceedings of the* 35th Winter School on Vibroacoustical Hazards Suppressions, 83-94, Wisła, Poland (2007)
- 12. COMSOL Multiphysics v. 3.4, Acoustic Module, COMSOL AB, <u>www.comol.com</u>, Stockholm, Sweden (2007)
- 13. Ingard U., On the theory and design of acoustic resonators, *Journal of the Acoustical Society of America*, **25**, 1037-1061 (1953)
- Tang P. K., Sirignano W. A., Theory of generalized Helmholtz resonator, *Journal of Sound and Vibration*, 26, 247-262 (1973)
- 15. Chanaud R. C., Effects of geometry on the resonance frequency of Helmholtz resonators, *Journal of Sound and Vibration*, **178**, 337-348 (1994)
- 16. Selamet A., Dickey N. S., Theoretical, computational and experimental investigation of Helmholtz resonators with fixed volume: lumped versus distributed analysis, *Journal of Sound and Vibration*, **187**, 358-367 (1995)
- Givoli D., Neta B., High-oreder non-reflecting boundary scheme for time-dependant waves, J. Comp. Phys., 186, 24-46 (2003)
- 18. Marburg S., Nolte B., Computational Acoustics of Noise Propagation in Fluids Finite and Boundary Element Methods, 578, Springer-Verlag, Berlin, Germany (2008)

Thank You for attention...

COMSOL Conference 2008, 4-6 November 2008, Hannover, Germany