COMSOL 用户年会 2016 上海站

基于COMSOL的激光抛光 过程仿真与机理分析

沈洪 副教授 sh_0320@sjtu.edu.cn, 021-34206660

上海交通大学 机械与动力工程学院

2016年11月3-4日 上海

Excerpt from the Proceedings of the 2016 COMSOL Conference in Shanghai

内容提要

・研究背景

I. 激光抛光技术简介 II. 国内外研究现状综述

・研究内容

I. 基于多物理场耦合的数值仿真 II. 钛合金表面激光抛光实验研究

・研究总结

内容提要

・研究背景

I. 激光抛光技术简介 II. 国内外研究现状综述

・研究内容

I. 基于多物理场耦合的数值仿真 II. 钛合金表面激光抛光实验研究

·研究总结

- ・ 技术原理
 - 一定能量密度和波长的<mark>激光束</mark>以特定的扫描方式<mark>辐照</mark>材料表面
 - 表面材料熔化,液态材料在熔池流动中重新分布
 - 表面粗糙度降低,获得光滑表面
- 技术优势 非接触式 + 聚焦精准 + 区域可控

・工程应用

・工程应用

・工程应用

(2004) T.A. Mai et al.

(2009-2011)C. Nusser et al. 不同分布形式(近高斯、礼帽形等)的脉冲激光 抛光工具钢获得接近镜面的表面粗糙度

纳秒激光抛光304不锈钢 Ra: 195nm→75nm

首次提出微熔化(micromelting)概念

Universidad Euskal Herriko del País Vasco Unibertsitatea

(2007) A. Lamikiz et al.

调整激光参数 (激光能量、扫描速度、光斑重叠率) 抛光SLS成型样品,大幅降低表面粗糙度

(2015) S. Marimuthu et al.

研究背景

(2013) C. Ma et al.

College of Engineering UNIVERSITY OF WISCONSIN-MADISON

- 提出完整的脉冲激光抛光物理模型

- 一建立了基于 COMSOL 的二维轴对称有限元模型
- 一温度场和熔融金属流体场耦合
- 一 仿真钛合金 Ti6Al4V 在抛光过程中表面形貌的发展

(2013) F.E. Pfefferkorn et al.

按照熔池中主导流动的机制不同,可将激光抛光方式分为两种: 马拉高尼效应 (Marangoni Effect) 主导的热表面张力流 (thermocapillary flow) 熔池表面张力波振荡 (capillary wave oscillation) 引起的表面张力流 (capillary flow)

内容提要

・研究背景

- I. 激光抛光技术简介
- II. 国内外研究现状综述

・研究内容

I. 基于多物理场耦合的数值仿真 II. 钛合金表面激光抛光实验研究

·研究总结

基于多物理场耦合的 激光抛光数值仿真

Example 1
住相流 - 层流
控制方程:
$$\rho \frac{d\vec{u}}{dt} = -\nabla p + \mu \nabla^2 \vec{u} + F_v$$
 (Navier-Stokes Equation)
 $\nabla \cdot \vec{u} = 0$ (Mass Conservation)
边界条件:
[1] 体积力(重力、浮力)
 $F_v = F_g + F_b \begin{pmatrix} F_g = \rho_0 g (\downarrow) \\ F_b = -\rho_0 \beta (T - T_{ref}) g (\uparrow) \end{pmatrix}$
n [2] 表面张力 (Surface Tension)
 $\sigma_n = \kappa \gamma \vec{n}$ (κ : 曲率 γ : 表面张力系数)
[3] 马拉高尼效应 (Marangoni Effect)
 $\sigma_t = \frac{\partial \gamma}{\partial T} \vec{\nabla}T \cdot \vec{t}$ ($\vec{\nabla}T$: 沿表面的温度梯度)

$$dr = 0$$

$$dr=0 \qquad dz=0$$

网格平滑方式: Laplace (27916域节点+513边界节点)
初始及边界条件:
[1] 初始网格变形量
dr₀ = 0 dz₀ = 0

 $u r_0 = 0 \qquad u z_0 = 0$

[2] 预设 r 方向网格位移

dr = 0

[3] 预设 z 方向网格位移

dz = 0

[4] 预设移动界面法向速度

 $\frac{dr}{d\vec{t}} \cdot \vec{n} = \overrightarrow{v_n} \quad (\overrightarrow{v_n} = u \cdot \overrightarrow{e_r} + w \cdot \overrightarrow{e_z})$

・ 边界条件总结

物理场	物理意义	边界编号	边界条件
传热场	激光辐照	2	热通量
	自然对流	2, 3, 4	对流
	表面-环境辐射	2, 3, 4	漫射面
	绝热	5	热绝缘
	表面张力	2	弱贡献
流体场	马拉高尼效应	2	<i>M arangoni</i> 效应
	壁	3, 4, 5	不可滑移壁
	对称轴	1	轴对称
移动网格	固定边界	1, 3, 4, 5	预设网格位移
	自由变形	2	预设网格法向速度

求解条件及时间

工作站配置:Intel Core i7-2600 @3.70GHz **(四核八线程)** 12.0 GB RAM

研究时间:0~12ms

求解器:PARDISO

求解时间:~100min

r

求解步长:0.01ms

温度场分布

表面形貌空间曲率变化

表面张力与马拉高尼效应的比较

表面张力的缺失

熔融金属沿z轴方向位移很小 大曲率表面形貌无法被消除

推动中心区域的熔融金属流向边缘 研究区域边缘凸起由5μm增长至7μm

钛合金表面的 激光抛光实验研究

_

_

线抛光预实验

加上学权				
实验编号	扫描速度 (mm/s)	激光功率 (W)		
(a)	1.5	12		
(b)	1.2	20		
(c)	1.0	26		
(d)	1.2	26		
(e)	1.5	26		
(f)	1.7	26		
(g)	1.5	35		
(h)	1.7	44		

加 て 会 粉

表面抛光实验

内容提要

・研究背景

- I. 激光抛光技术简介
- II. 国内外研究现状综述

・研究内容

I. 基于多物理场耦合的数值仿真 II. 钛合金表面激光抛光实验研究

・研究总结

基于多物理场耦合的数值仿真

- [1] 激光抛光机理: 熔融金属受表面张力与马拉高尼效应同时作用, 在流动中重新分布
- [2] 表面张力与马拉高尼效应的比较

	表面张力 (Surface Tension)	马拉高尼效应 (Marangoni Effect)
主要作用	消除大曲率表面形貌	熔融金属在熔池中重新分布
作用方向	表面法向	表面切向
主导阶段	熔融初始阶段	熔池发展阶段

钛合金表面的激光抛光实验

- [1] 获得较为理想的抛光后表面:在加工方向上,表面粗糙度降低52.4%
- [2] 探索出一种适于本激光加工平台的工艺方法:"加热 暂停 再加热"间歇加工

THANKS! Q & A