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FLUID FLOW  

Re << 1               Laminar Flow                 Stokes Eq 

 

𝜌
𝜕𝑢

𝜕𝑡
+  𝛻. 𝑝 =  𝜇(∆𝑢)  

𝛻. u = 0 

 

 Boundary Conditions: 

   Inlet:      𝑉 𝑠 = 𝑉𝑚𝑎𝑥 ∗ 4 ∗ 𝑠 ∗ (1 − 𝑠) 

   Outlet:  Constant pressure 
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FLUID FLOW 

Velocity profile at  t= 0s 
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CHEMICAL REACTIONS 

Equilibrium Reaction Keq 

CO2(g) = CO2_aq 3.38*10^-2 

CO2_aq + H2O  = H+ + HCO3
- 10^-6.35 

HCO3
- = H+ +  CO3

-2 4.69*10^-11 

H2O = H+ + OH- 1.023*10^-14 

Solution Species 

CO2(g) 

CO2_aq 

H+ 

OH- 

CO3
-2 

HCO3
- 

Ca2+ 

Reversible reaction on the surface of pore boundary 

 

CaCO3            Ca2+ +  CO3
-2 

Rcalcite=(k1aH+ + k2aCO2(aq) + k3)*{1-[(aCa2+*aCO3
2-)/Keq]} 

                                                                      (Plummer et.al., 1978) 
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TRANSPORT OF DILUTED SPECIES 

Advection-Diffusion-Reaction controlled transport  

 
𝜕𝑐𝑖

𝜕𝑡
  −  𝛻. 𝐷𝑖. 𝛻𝑐𝑖 + 𝑢. 𝛻𝑐𝑖 = 𝑅𝑖 

 

 Flux due to surface reaction 
−𝑛. (−𝐷𝑖. 𝛻𝑐𝑖 +  𝑢. 𝑐𝑖) =  𝑅𝑐𝑎𝑙𝑐𝑖𝑡𝑒 

 

 Inflow Condition: Danckwerts flux condition 

                     −𝑛. −𝐷𝑖. 𝛻𝑐𝑖 +  𝑢. 𝑐𝑖 = 𝑢. 𝑐𝑜𝑖 
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MOVING BOUNDARY 

Mesh velocity, due to dissolution of the calcite  

 
𝜕Γ

𝜕𝑡
.n = νo  

νo  = (𝑅𝑐𝑎𝑙𝑐𝑖𝑡𝑒*MV) 

 

Rcalcite: Rate of calcite dissolution (mol m-2 s-1) 

MV: Molar volume of calcite (m3mol-1) 
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Γ = f(x, y) 



RESULTS 

Average flow velocity = 1 µm/s PV = 0 
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Max. Velocity at inlet = 1 µm/s 

pH 



RESULTS 

Average flow velocity = 1 µm/s PV = 1620 
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Max. Velocity at inlet = 1 µm/s 



RESULTS 

Average flow velocity = 1 µm/s PV = 3300 
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Max. Velocity at inlet = 1 µm/s 



RESULTS  

After injection of same number of PV = 3300 
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Max. Velocity at inlet = 10 µm/s 



RESULTS  

After injection of same number of PV = 3300 
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Max. Velocity at inlet = 100µm/s 



Normalized displacement profile along pore wall 

for different flow velocity 
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CHALLENGES 

 Concentration gradient between pore fluid (pH 

9.9) and injecting fluid (pH 4.4)  

 Flux based condition  
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CHALLENGES 

 Concentration gradient between pore fluid (pH 

9.9) and injecting fluid (pH 3.9)  

 Flux based condition  

 Concentration constraint condition                    
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CHALLENGES – FLUX BASED CONDITION                    
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CHALLENGES - CONCENTRATION CONSTRAINT 
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CHALLENGES - CONCENTRATION CONSTRAINT 
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CHALLENGES 

 Concentration gradient between pore fluid (pH 

9.9) and injecting fluid (pH 3.9)  

 

 High velocity impact on numerical stability 

 Pe = 
𝑢∗ℎ

2∗𝐷
 > 1  

 Fine Mesh 

 Time dependent step function for 

concentration of injecting fluid 
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CONCLUSION 

 Uniform dissolution for high flow velocity and 

non-uniform for low velocity 

 

 Low flow velocity dissolves more for the same 

number of pore volumes 

 

 High flow velocity dissolves in same duration of 

time.  

 

 COMSOL – A strong multiphysics solver to 

couple moving boundary with reactions.  
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