

Green's Function Approach to Efficient 3D Electrostatics of Multi-Scale Problems

Cosmin Roman, Lukas Schmid, Leon Stolpmann, Christofer Hierold

Micro and Nanosystems Department of Mechanical and Process Engineering

BRNC | FIRST

Carbon nanotube transducers

chemical sensors

M. Mattmann *et al.,* Appl. Phys. Lett. 94, 183502 (2009)

ETHzürich

displacement sensor, suspended quantum dots

C. Stampfer et al., Nano Lett. 6, 1449 (2006) R. Leturcq et al., Nature Phys. 5, 327 (2009)

tunable resonators S.-W. Lee, IEEE NEMS, 2011

pressor sensors

T. Helbling et al., Transd.'07&E. XXI, 2, 2553 (2007)

T. Helbling et al., Proc. IEEE MEMS 2009, 575 (2009)

2

Open research questions

To improve our understanding and to design better sensors, we need a simulation platform able to model all relevant physics!

Relevant physics

- 3D mechanics of thin film membranes with topography
- thermal stresses
- (other physics for other sensors, e.g. gas sensors)

- 3D field effect transistor
 - electrostatics
 - charge transport

We chose COMSOL for the ability to model these and much more (open to other sensors)

Modeling a 3D carbon nanotube FET

Benchmark model

How is the I-V characteristic of such a device computed?

The self-consistent procedure

- Iterate between screening eqs. (Schrödinger) and Poisson eqs. till potential convergences
- After convergence, solve transport eqs.

The challenge

The challenge/bottleneck is iterating over the 3D Poisson equation (1'000-10'000 iterations needed for an I-V characteristic)

The scale range is from 1Å to 10µm (5 orders) and geometry is 3D!

The challenge/bottleneck is iterating over the 3D Poisson equation (1'000-10'000 iterations needed for an I-V characteristic)

The solution is:

- compute elementary solutions from which an arbitrary solution can be obtained as a (cheap) combination
- accelerate (or approximate) the computation of each elementary solution

ETHzürich

9

Breakdown into elementary solutions

Local adaptive mesh refinements

Key trick to accelerate the Laplace problem: Local adaptive mesh refinements, because we only care about the potential at contacts!

 Error Estimation 		
Error estimate:		Functional 🔹
Functional:		intop1(abs(es.Ex)*(exp(-0.5
Adjoint solution error estimate: Automatic 🔹		
 Mesh Refinement 		
Refinement method:	Mesh initialization 🔹	
Residual order:	0	
Element selection:	Rough global minimum 🔹	
Element growth rate:	2.7	

ETHzürich

$$\int d^3 \mathbf{r} \cdot |\mathbf{E}_x(\mathbf{r})| \cdot \left[\exp\left(-\frac{|\mathbf{r} - \mathbf{r}_s|^2}{2 \cdot \sigma^2}\right) + \exp\left(-\frac{|\mathbf{r} - \mathbf{r}_b|^2}{2 \cdot \sigma^2}\right) \right]$$

https://www.comsol.com/blogs/using-adaptive-meshing-localsolution-improvement/ Walter Frei | December 27, 2013

Adaptive mesh refinement comparison

L2 Norm (Global refinement)

Number of DoF solved for: 139'020 ... 1'651'281. Solution time: 259 s. (4 minutes, 19 seconds)

Functional (Local refinement)

Number of DoF solved for: 42'031 ... 158'820. Solution time: 57 s.

5-10× improvement over global mesh refinement!

Laplace problem: summary

Gate response

Source | Drain response

Breakdown into elementary solutions

Local adaptive mesh refinements

ETHzürich

Key trick to accelerate the Poisson GF problem: Local adaptive mesh refinements plus an interpolation scheme to skip redundant computations

$$\int d^{3}\mathbf{r} \cdot |\mathbf{E}_{x}(\mathbf{r})| \cdot \frac{1}{2} \left[\tanh\left(\frac{x - x_{s} + 30\mathrm{nm}}{10\mathrm{nm}}\right) - \tanh\left(\frac{x - x_{D} - 30\mathrm{nm}}{10\mathrm{nm}}\right) \right] \cdot \exp\left(-\frac{(y - y_{NT})^{2} + (z - z_{NT})^{2}}{2 \cdot r_{NT}^{2}}\right)$$

$$\bullet \text{ Error Estimation}$$

$$\mathsf{Error Estimation}$$

$$\mathsf{Functional: intop1(abs(es.Ex)^{*}(hv((x + x2/z) + x2/z)) + x(z) + x(z)$$

Element growth rate:

2.7

15

Poisson GF sub-problem: summary

"Point" (Gaussian) probe charge at x/L=0.76

1Å spatial resolution reached at the charge site!

ETHzürich

The "Warp" interpolation procedure

ETH zürich

 Principle: if the potential due to "left" and "right" positions of the probe charge are known, the potential for a probe in the "middle" is obtained by shifting the "left"&"right" contours in the middle

17 micro and nanosystems

The "Warp" interpolation results

Within a 1% relative accuracy the "warp" interpolation reduces the number of probe charge positions (N) from ~7'500 to 97 (~80×)

Comparison of full 3D vs GF Poisson solver

19 micro and nanosystems

Conclusions and outlook

Conclusions

 Significant speed-up (350×) obtained in simulating 3D electrostatics by utilizing the Green's Function approach suggested here (projected for 200 I-V point computation for 100 Poisson solutions per I-V point)

Outlook

- Integrate the quantum transport solver to get I-V characteristics
- Model the mechanical/chemical aspects of the sensors
- Apply the modeling platform to various sensors based on carbon nanotubes

L. Jenni et al., Micr. Eng. 153, 105 (2016) [10.1016/j.mee.2016.03.013]

L. Kumar, Eurosensors 2017

Swiss Federal Institute of Technology Zurich

ETH Zurich Micro and Nano Science Platform

Departement Maschinenbau und Verfahrenstechnik Department of Mechanical and Process Engineering

DMAVT

Thank you!

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FNSNF Swiss National Science Foundation

