An Agglomerate Model for the Rationalisation of MCFC Cathode Degradation

<u>Benedetto Bozzini</u>, Stefano Maci, Ivonne Sgura *University of Salento - Lecce*

Roberto Lo Presti, Elisabetta Simonetti ENEA – Casaccia Roma

COMSOL Conference 2009 October 14-16, Milan, Italy

MOLTEN CARBONATE FUEL CELLS (MCFC)

STACK

CATHODE REACTION

 $1/_2O_2 + CO_2 + 2e^- \rightarrow CO_3^=$

SINGLE MOST CRITICAL SYSTEM DURABILITY ISSUE: CATHODE DEGRADATION

Pristine NiO cathode

Same, after 1000 h of operation in MCFC

AGGLOMERATE STRUCTURE OF A POROUS ELECTRODE

Microstructure of pristine NiO cathodes

2500x SEM Micrograph

ZOOM 5000x : typical agglomerate structure

MCFC Electrochemistry in the 2D Agglomerate Model: PDEs, geometry, BCs

System of coupled reaction-diffusion PDEs, corresponding to the the steady state mass-balance equations for the concentrations of peroxide $c^{ox}(x)$ of carbon oxide $c^{cd}(x)$ and for the potential $\eta(x)$.

3D Agglomerate Model

Time-dependent Electrochemical Efficiency of MCFC

Transient Improvement of Cathode Performance by Lithiation (particle growth, constant volume, no morphology changes)

Simulation of Cathode Degradation by Particle Agglomeration

N= number of catalyst particles

Simulation of Local Electrokinetic Quantities in 2D and 3D Geometries

Simulation of Global Electrokinetic Quantities for Successive 2D Agglomeration Steps

agglomeration $\uparrow \Rightarrow i_{L,c} \downarrow \land O_2$ utilisation \downarrow

Overvoltage [V]

Overvoltage (Volt)

Comparison with Long-Term Operation Literature Data

Non-ohmic polarisation contribution of a MCFC cell at 150 mA/cm² [Tanimoto 98]

Reduction of catalyst active region, estimated from numerical simulations

Conclusions

✓ We developed a numerical approach, based on the literature agglomerate scheme, able to rationalise changes of electrocatalytic behaviour in terms of morphological variations.

✓ Both positive (lithiation) and negative (agglomeration) electrocatalytic evolutions can be followed.

✓ We found efficient electrochemical conceptual tools able to manipulate the local information provided by COMSOL in order to gain information on the global electrochemical quantities, relevant to fuel-cell development.

✓ We established an approach providing a link between information at material-science level and response of the global electrochemical system.

