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Objective

 The existing lithium ion battery model in COMSOL’s 

Multiphysics (MP) software is extended to include the 

thermal effects. The thermal behavior of a lithium ion cell 

is studied during the galvanostatic discharge process 

with and without a pulse.



Schematic of a Lithium Ion Cell

• Problem Description
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Thermal Model of the Lithium Ion Battery

• Governing Equation: Electrochemical Model

( ) ( )

( )
2

p eff,p 2

1

eff,p

2

eff,p

, ,2
, 2

p

2

p2

eff,p p

ε1

 

ln
κ

  Positive Electrode

, ,1    

    

    

    κ

s p s p
s p

p

p

p

c c
D t a j

t x

a Fj
x

c
a Fj

x x

c r t c r t
D r

t r r r

x x

σ

β

+

∂ ∂
= + −

∂ ∂

∂ Φ
=

∂

∂Φ ∂
− +

∂ ∂

•

∂  ∂ ∂
=   ∂ ∂ ∂ 

∂ ∂    =   ∂ ∂   

( ) ( )

( )
2

n eff,n 2

1

eff,n

2

eff,n

, ,2
, 2

n

2

n2

eff,n n

ε1

 

ln
κ

  Negative Electrode:
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Thermal Model of the Lithium Ion Battery

• Governing Equation: Thermal Model
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T∞ is the temperature of the cooling stream, Qrxn is the total reaction heat 
generation rate, Qrev is the total reversible heat generation rate, Qohm is 
the total ohmic heat generation rate.



Thermal Model of the Lithium Ion Battery

• Temperature Dependent Variables
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ϕ denotes: Ds, and k.



Variable Coupling in Multiphysics
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The top 1D geometry consists of three segments which denote the positive electrode, 
the separator and the negative electrode. The bottom two rectangles represent the solid 
phases in the positive electrode and the negative electrode, respectively. The pore wall 
flux is extracted from the 1D geometry and projected to the top boundary of the 2D 
geometry. The concentration of Li ions on the top boundary of the 2D geometry is 
projected to the 1D domain as the surface concentration of the solid particles.



Model Validation

• Discretization Scheme in FORTRAN (Finite Volume 
Method)
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Model Validation

• Comparison of the Simulated Cell Voltage under Low 
Current Rate
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Model Validation

• Comparison of the Simulated Cell Voltage under High 
Current Rate
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Model Validation

• Comparison of the Profiles of the Concentration of the 
Binary Electrolyte
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Simulation Results in COMSOL MP

The temperature on the cell surface at 1C discharge process under three different cooling 
conditions where the heat transfer coefficient is 10.0, 1.0 and 0.1 W/m2/K, respectively, 
and two limiting conditions: the isothermal condition and the adiabatic condition.



Simulation Results in COMSOL MP

The cell provides more discharge capacity when it is placed in a better heat isolation
environment (i.e. adiabatic condition). In a better isolated environment, the cell
temperature increases faster during the 1C discharge process which results in the higher
diffusion coefficient for the binary electrolyte and reduces the diffusion limitations.



Simulation Results in COMSOL MP

The concentration profile under the adiabatic condition is flatter than that in the 
isothermal case, which indicates a better diffusion property in the electrolyte 
under the adiabatic condition than under the isothermal condition.



Simulation Results in COMSOL MP

Temperature on the cell surface during discharge process under different current rates 
while the heat transfer coefficient h=1.0 W/m2/K where the DOD is defined as: 
DOD=time * C rate / 3600.



Simulation Results with Pulse Discharge

Test protocol: the cell voltage during the C/2 discharge for 3000s followed by 
a 3C pulse discharge until the cell voltage drops to 2.5V.



Simulation Results with Pulse Discharge

The corresponding temperature on the surface of the cell is also plotted in the figure on the 
left. The surface temperature at the end of the 3C pulse is slightly less than that in the pure 
3C discharge process.
Figure on the right shows the concentration of the binary electrolyte at the two ends of the 
cell during the pulse discharge process. At the beginning of the pulse, the concentration of 
the electrolyte changes extremely, after that it relaxes and tend to a stable value.



Thank you for your Attention!

Questions?
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