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Abstract: One of the crucial topics in this 
century is sustainable energy. Since the 
sources of fossil fuels are limited and are going 
to be exhausted, there is a need to look for 
sustainable renewable energy. In this respect, 
the exploitation of geothermal energy from 
deep hot aquifers becomes opportune. Hence, 
insight is required in the heat balance of 
potential aquifer systems. Essential issues are 
convection, conduction and dispersion. 
 Modeling such processes is affected by 
numerical errors when using computer models 
and by the complexity of analytical solutions. 
This article focuses on Lauwerier’s problem. 
As an extension, it is suggested that beside 
convection in the aquifer and conduction to 
adjacent layers also conduction in an aquifer 
can be considered in a simple way. For a 
characteristic situation, a comparison is made 
with the result of the numerical code 
COMSOL. This gives new insight in the 
possible misjudges of heat transport 
simulations due to numerical effects and in the 
applicability of models. 
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1. Introduction 
 
Geothermal energy is a promising area for 

substitution of fossil fuels. Recently, much 
effort is given to optimize production by 
various modeling techniques. Analytical 
models are useful for obtaining a general view 
of principle effects and numerical calculations 
are proper techniques for the evaluation of 
complex situations. However, analytical 
models have serious limitations considering 
realistic applications and numerical models 
hamper from numerical errors and instability. 
For proper understanding of these errors, and 
for validating the numerical models, it is useful 
to regularly compare analytical and numerical 
results. 

An analytical solution for convective heat 
transport in porous media is given by 

Lauwerier (1955). An extension to Lauwerier 
and a complete solution for convective-
conductive heat flow together with bleeding to 
adjacent layers has recently been developed by 
Barends (2009). These analytical solutions 
have been used to identify the numerical errors. 

 

2. Mathematical formulation 
 

 
Figure 1. Schematization of the heat process in a 
two-layer system 

 
The quasi two-dimensional convection-

conduction heat balance equation in a plane-
symmetric one-dimensional aquifer bounded 
by a conducting impervious adjacent layer 
(aquiclude) is described by following set of 
equations, assuming instant thermal 
equilibrium between fluid and grains. 

 

 
2

02
T T Q T h

D v q
x H t Hx

∂ ∂ ∂
− + = +

∂ ∂∂
  

where   x > 0, t > 0  (1a) 
 

 
2 '

' 2
T T

D h
tz

∂ ∂
=

∂∂
  

where     z > 0, t > 0  (1b) 
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at the interface    z = 0, t > 0    (1c) 

 
Here: 

Excerpt from the Proceedings of the COMSOL Conference 2009 Milan
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Where: 

T temperature [oC] 
Q heat source (heat production per 

meter width) 
H aquifer height [m] 
R thermal retardation factor 
T1 injected temperature [oC] 
T0     initial temperature [oC] 
λ heat conductivity[J/(msoC)] 
ρ density [kg/m3] 
c specific heat capacity [J/(kgoC)] 
w real velocity [m/s] 
q Darcy velocity [m/s] 
φ porosity 
hq0 heat flux across the interface between 

the aquifer and the adjacent layer  
[oCm/s]  

D thermal diffusivity of the aquifer 
[m2/s] 

v heat velocity [m/s] 
 
 
The subscript f and s refer to the porous 

fluid and the porous solids, and the accent 
refers to the adjacent layer. Flow and 
conduction in the aquifer is along the x-
direction. Bleeding (conduction) in the 
adjacent layer is in the z-direction. 

Flow in a porous medium induces 
dispersion due to scatter at smaller scale. 
Following the approach of Bear (2003), the 
thermal hydrodynamic macrodispersion is 
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consisting of the conductive part and the 

mechanical part. Here, AL is the longitudinal 
mechanical macrodispersivity.  

                       
The conditions for the system are: 
 

D, D’, h, v, AL, H constant  (3a) 
 
T = T’ = 0, x > 0,    z > 0, t < 0 (3b) 
 
T = T’ = 0,for (x,z → ∞, t > 0  (3c) 
 

T = T1 U[t],at x =0 (jump at t = 0)  (3d) 
 
Q = 0,         for x > 0, t > 0 (3e) 

 
Here U[t] is the unit step function: U = 0 

for t < 0 and U = 1 for t > 0. 
 

3. Analytical solutions 
Laplace transform is applied to equation 

(1), without the source term, and (3). 
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With regard to condition (5c) the solution 

for equation (4b) is 
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and equation (4a) becomes 
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Trial by exp[ ]B xαΘ =  provides the so-

called characteristic equation 
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It has one positive and one negative real 

root. 
 
 

 



With regard to condition (5c) the negative 
root applies, and the solution of (6) becomes 
with condition (5d) and 1B T sθ= =  
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The exact solution can be found by Laplace 
inverse transform (see Barends, 2009). In 
literature, Lauwerier’s solutions is mentioned 
for a special case of (7), which is discussed 
and extended here. 

 

4. Convection, conduction and 
bleeding  

Lauwerier assumes that heat transfers in 
the aquifer just by convection (no conduction) 
and into the adjacent layers by vertical 
conduction. So the heat distribution in the 
reservoir is assumed independent vertically 
uniform. 

In this case, equation (7) can be used with 
D = 0. The elaboration for D tending to zero 
with the use of Taylor expansion can be 
simplified and by the inverse Laplace 
transform (Bateman, 1954a), the solution 
becomes: 
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The conditions related to the elaboration 

with Taylor expansion are: 
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Since the interest is focused on the 

behavior of the front at larger times, these 
conditions can be easily satisfied. The 
mathematical formulation is reformulated 
using following dimensionless variables: 
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The Lauwerie solution is similar to 

equation (9) when adopting δ = 0. Formula (8) 
is reformulated for a specific reference 
temperature T0 and injected temperature of T1 
according to: 
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Figure 2. Isothermal lines in the (χ,τ) plane for 
equation (9). 

 
Figure 2 shows the effect of δ in the 

extended Lauwerier solution, equation (9). 
 
Next, the parameter effect consider using 

the equation (10).To be able to see the effects 
more clear each parameter has been changed 1, 
2, 5 and 10 times. Some of these values may 
be are not realistic. 

 
Figure 3. Graphs of equation 10 for v/v0=1, 2, 5, 
10; v0=1E-7[m/s]  

 
Figure 3 shows the sensitivity of the 

solution to fluid velocity. As expected, 
convection has a large effect on the 
breakthrough time.  



 
Figure 4. Effect Graphs of equation 10 for 
H/H0=0.5, 1, 2, 5, 10; H0=15 m 

 
 
Heat loss (bleeding) is more affective in 

thin aquifers, figure 4. 
 

 
Figure 5. Graphs of equation 10 for D'/ D'0=1, 2, 
5, 10; D'0= 8.9E-7 

 

 

 

 
 
 

 
Figure 6. Effect of conductivity of the aquifer on 
heat transport D/D0=1, 5, 10,50,100. Each graph 
show D effect in different velocities 

 
 
 As the thermal conductivity of the top 

layer increase the bleeding effect becomes 
higher (figure 5). In the case of cold water 
injection to the hot aquifer, top layer cools off 



while heating the aquifer which became colder 
duo to injected water. 

Graphs in figure 6 show the reservoir 
conductivity effect on heat transport. When 
convection (velocity) increases thermal 
diffusivity effects become less dominant, even 
vanish.  
 

5. Comparison with COMSOL 
Multiphysics 

 
The numerical calculations have been 

elaborated using Comsol Multiphysics 3.5. 
Here, in a hot aquifer with original temperature 
of T0 = 80 degrees Celsius, confined between 
two impermeable layers, a hot water doublet 
system is installed, the filters placed at a 
distance of 200m. Cold water of T1 = 30oC will 
be injected. The numerical simulation shows 
how and when cold water reaches the pumping 
well (breakthrough). The following 
assumptions were considered: 

 
1. The aquifer is homogeneous and infinite 

in horizontal direction; its thickness H is 
constant. 

2. The caprock and the bedrock, above and 
below the aquifer, are homogeneous and 
impermeable. 

3. The aquifer is located at the 2000 m 
depth. 

4. Fluid flow in the aquifer is assumed to 
be steady; injection rate Q is equal to the 
production rate. 

5. Wells fully penetrate the aquifer.  
6. Thermal equilibrium is supposed to take 

place instantaneously between the water 
and the rock matrix in the aquifer. 

7. Volumetric heat capacity (ρc) for both 
the water and the rock, and the caprock, 
are constant. 

8. Differences in viscosity between 
injected water and initial water are 
disregarded. 

9. Heat loss (bleeding) occurs only through 
top layer (caprock). The lower boundary 
is considered a thermal isolator. 

10. The thermal and hydraulic properties of 
the ground are estimated from a realistic 
situation (appendix).  

11. Aquifer thickness is kept small in order 
to better compare with the 1D analytical 
solution. 

12. The distance between injection and 
pumping well is 200 m which is smaller 
than reality, for reasons of calculation 
time. 

 
 

 
 
Figure 7. Temperature field after 5 year injection 
of cold water. Arrows show flow direction in the 
aquifer 

 
 

 
 

Figure 8. Comparison of different analytical 
methods with numerical result 

 

 
 
Figure 9. Breakthrough curve at x = 100 m.  
Red: analytical solution (12), blue: numerical 
calculation. 



 
Figure 10. Temperature distribution after 5 year. 
Red: analytical solution (12), blue: numerical 
calculation. 
 

 
Figure 8 compares several analytical 

solutions for different conditions with 
numerical results. The blue line shows pure 
convection in the aquifer with a sharp front. 
The pink line demonstrates the solution of 
Ogata and Banks (1961) which deals with 
convection and conduction in the aquifer 
without bleeding. The pink line can perfectly 
illustrate the conduction effect when compared 
with the blue line. The red line is the extended 
Lauwerier solution. The green painted area 
between these lines shows the bleeding effect 
which is significant. Numerical result by 
COMSOL is the brown line. 

Figure 9 and 10 show the numerical result 
compared to the extended Lauwerier solution. 
The difference is painted in pink. It is due to 
numerical error (numerical dispersion) and a 
mismatch of the semi-2D analytical solution 
and the full 2D numerical solution.  

Numerical errors in models can lead to 
mis-evaluation of the geothermal reservoir life 
time and heat potential which is of economic 
importance.  

6. Conclusion 
 
The extended Lauwerier solution which 

considers both conduction-convection in the 
aquifer and conduction in the adjacent layer 
(bleeding) shows that conduction in the aquifer 
is significant especially in the case of low flow 
velocity. A comparison which was made 
between a numerical calculation by COMSOL 
and the extended Lauwerier solution shows a 
serious deviation which is mainly caused by 
numerical dispersion. 

There are methods to decrease numerical 
errors but in general errors are inevitable. An 
analytical solution can provide an idea about 

the size of numerical errors. Understanding of 
numerical errors can provide more accurate 
interpretation of numerical simulations. 
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8. Appendix  
Table 1: The parameters used for numerical 
calculations 

 
φ 0.25 porosity                                      
k 2.8E-13[m2] permeability                               
ρf 1200[kg/m3] Saline warm fluid density           
ρs 2800[kg/m3] solid density                               
λs 1.7[W/(m.degC)] Heat conductivity of rock            
λf 0.6[W/(m.degC)] Heat conductivity of fluid            
H 15[m] thickness                                    
Tc 30[degC] cold temperature                        
Tf 80[degC] warm temperature                      
cf 4184[J/kg/degC] specific heat capacity of fluid     
cs 830[J/kg/degC] specific heat capacity of solid    
kt 1E-18[m2] permeability of top layer             
φt 0.05 porosity of top layer                   
ρt 3000[kg/m3] density of top layer                     

λt 2.6[W/(m.degC)] thermal conductivity of top 
layer  

ct 840[J/kg/degC] heat capacity of top layer           
Tt 80[degC] top layer temperature                 

 
 
 




