The Birefringence Change of Optical Fiber Polarizer with Fe Film in Corrosive Solution

2017.10.24

Ding, Likang
Tel: 13147128048
E-mail: 907417381@qq.com

Hu, Wenbin
Tel: 18086427089
E-mail: wenbinhu_whut@163.com
Contents

- Background
- Simulation
- Conclusion
BACKGROUND - Requirement

Corrosion of metallic structures → Severe damages

How to monitor Corrosion
BACKGROUND - Optical fiber sensor

- **Bare fiber type (grating) sensors**

 ![Bare fiber type](image1)
 ![Bare grating type](image2)

 deficiency: Vulnerable to the interference of external stress, optical fiber (grating) being easy to fracture and low accuracy of sensor.

- **Corrosion of sensitive membrane type sensor**

 ![Sensitive membrane type optical fiber](image3)
 ![Sensitive membrane type optical grating](image4)

 deficiency: Sensor sensing features have low repetition rate, corrosion sensitive membrane is easy to fall off, idea of designing experiment is singleness, Encapsulation is difficult.
BACKGROUND - Mechanism

- A single mode optical fiber is side-polished to obtain a D-shaped optical fiber. D-shaped optical fiber is coated with Fe film to obtain **polarization mode**.

- D-shaped optical fiber is used to monitor the corrosion of Fe film.

![Diagram](image)

Before Corrosion

After Corrosion

Chemical changes → Physical changes
SIMULATION - Methods

- Electromagnetic Waves, Frequency Domain is used as physics interfaces.
- Mode analysis is used to study the simulation.
- The scattering boundary condition is used to reduce the reflection from the boundary.

Fig1. geometric graph of simulation
SIMULATION - Equations

Power

\[I = \int J \cdot dS \]

\[P = I^2 R \]

Leakage Power

\[\eta(\text{dB}) = 10 \log \left(\frac{P_{\text{Leakage}}}{P_{\text{Total}}} \right) = 10 \log \left(\frac{I_{\text{Leakage}}^2}{I_{\text{Total}}^2} \right) \]

Extinction Ratio

\[\text{ER(\text{dB})} = 10 \log \left(\frac{P_{\text{TE}}}{P_{\text{TM}}} \right) = 10 \log \left(\frac{I_{\text{TE}}^2}{I_{\text{TM}}^2} \right) \]
SIMULATION – Two models

Fig 2. D-shaped optical fiber **without** Fe film

Model A

Fig 3. D-shaped optical fiber **with** Fe film

Model B

With Fe film

Without Fe film
SIMULATION - Power Leakage

\[\eta(\text{dB}) = 10 \log \left(\frac{P_{\text{Leakage}}}{P_{\text{Total}}} \right) = 10 \log \left(\frac{I_{\text{Leakage}}^2}{I_{\text{Total}}^2} \right) \]

Red—\(P_{\text{total}} \) Blue—\(P_{\text{Leakage}} \)

Model A

Leakage power vs Polishing depth
SIMULATION - ER value

\[
ER(\text{dB}) = 10 \log \frac{P_{TE}}{P_{TM}} = 10 \log \frac{I_{TE}^2}{I_{TM}^2}
\]

Model B

![Graph showing ER value vs thickness of Fe film](image)

- In Air
- In NaCl
SIMULATION – Corrosion process

Fe \rightarrow Fe$_3$O$_4$ \rightarrow Fe$_2$O$_3$ \rightarrow NaCl

(a) Intact stage | Eroded stage | Final stage

<table>
<thead>
<tr>
<th></th>
<th>n_{Real}</th>
<th>n_{Imag}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) ER (dB) | Leakage (dB)

<table>
<thead>
<tr>
<th></th>
<th>ER in air</th>
<th>Leakage in air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

- D-shaped optical fiber can be coated with Fe film to obtain polarization mode.
- With the increasing of side-polished depth, leakage power will decrease.
- With the increasing of the Fe-film’s thickness, ER value will decrease.
- With the corrosion of Fe-film, ER value will decrease.
Ding, Likang
Tel: 13147128048
E-mail: 907417381@qq.com

Hu, Wenbin
Tel: 18086427089
E-mail: wenbinhu_whut@163.com