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Introduction

 For tunnels in cold regions, groundwater seepage can lead to the formation
of ice.

Pack of ice coming from a joint and spreading onto the

Ice stalactites and ice patches on the ground
walkway

 To develop a numerical model at the joint scale to simulate the coupled
phenomena that control seepage and the formation of ice, namely heat
transfer, water flow and phases change.



Simplified model of expansion joints

e For the model geometry
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Expansion joint in expanded polystyrene + waterstop in the concrete




Simplified model of expansion joints

* For the numerical model
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Simplified model of expansion joints for the numerical model

« This model corresponds to a cross section of the concrete tunnel lining at the key of the vault.




Boundaries conditions for the joint model

Flow=0;
Temperature =0

- Groundwater temperature (T= 10°C);

- Pressure head 110 m
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- Convective heat flow # O;
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Boundary conditions for the joint model
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Equations of the model and implementation In
COMSOL

« Two equations govern this model

« Heat conduction equation deduced from energy
conservation in freezing porous media

« Continuity equation

* Those equations are implemented in COMSOL In
using the coefficient form PDEs interface



« Permeable joint
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* The isotherms obtained in summer and winter have the shape of a drawdown cone with a water
temperature inside the tunnel at the joint of 3 °C in winter and 10 °C in summer

 In winter, the ice saturation shows that the soil and the joint are saturated with water contrary to the
concrete which is frozen (impermeable to water) during winter



Results

* Impermeable joint
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Isotherms in °C at t=181 days (July) Water saturation (w;,) at t= 181 days (July)

 During winter, the isotherms are parallel to the tunnel axis with a temperature inside tunnel at the joint of
-20 °C. In summer, this temperature is equal to 24 °C

 The ice saturation shows frozen materials (impermeable to water) during winter, whereas liquid water is
present during summer
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Results

« Water flow inside the tunnel through the expansion joints
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» For both joints (low-permeability joint and impermeable joint), the water flow in winter is equal to zero
because of the presence of ice (impermeable to water) but in summer the flow rate increases.

On the other hand, we observe two sudden changes corresponding to the ice to water phase change at
t=89 days (April) and the opposite phase change (water to ice) at t=273 days (October) for both joints
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Example of solution

 The model has been used to validate different solutions meant to decrease
water infiltration through permeable joints

A decrease in water pressure at the extrados applied through controlled drainage is used as
an example herein
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* In winter, the isotherms are parallel to the tunnel axis and the whole joint is frozen (impermeable to
water)

* In summer, the joint is not frozen and the water temperature has the shape of a drawdown cone with a
value of 15 °C inside the tunnel at the joint
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Conclusion

Under proper boundary conditions, these equations allow the flow rate and
the temperature and pressure fields around each type of joint (permeable,
low-permeability, impermeable) to be evaluated for the summer and winter
periods

Our results show that the permeable joint is not frozen in winter (saturated
with water) unlike the low-permeability and impermeable joints which are
frozen (impermeable to water)

The evaluation of the flow rate as a function of the permeability of the joint
has allowed the time corresponding to the ice/water and water/ice phase
change at the expansion joint to be determined

 t= 89 days (April) and t= 273 days (October) for both types of joints (low-permeability and
impermeable)

The simulated solution approach has shown that the reduction of the
pressure head allows the permeable joint to freeze in winter, similarly to the
low-permeability and impermeable joints
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Pirnia, P., Duhaime, F., Ethier, Y., Dubé, J.-S., 2018. ICY: an interface between
COMSOL Multiphysics and YADE. Computers & Geosciences.
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Properties

Porosity 0.065
Solid matrix density 2600
Water density

Ice density

Specific heat capacity of the

solid matrix

Specific heat capacity of

water

Specific heat capacity of ice

Thermal conductivity of the
solid matrix

Thermal conductivity of
water

Thermal conductivity of ice

Intrinsic permeability 1.49 x 10
13

Heat exchange coefficient
(air)

Numerical values

Concrete
0.01
2300
1000
917
880
4180
2100
1.8
0.59

1.7
1.84 x 10°1°

20

Joint

0.9
11.5

1450

0.05

Variable

Waterstop

0.01
7850

475

44.5

109

Units

kg/m?3
kg/m3
kg/m?3

J/kg.K
J/kg.K
J/kg.K
W/m.K
W/m.K

W/m.K
m2

W/m2.°C
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