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Abstract

This talk is for users of the COMSOL Multiphysics® software who, like the present author,
are relative newcomers to numerical simulation but have a strong grounding in
Hydrodynamics or related areas of Mathematical Physics. As part of a multi-year plan to
develop proficiency in Equation Based Modeling the present author has developed a
sequence of COMSOL® simulations, each of which incorporates some complication that its
predecessors did not. Simulations reported in prior COMSOL Conferences have addressed
the complications presented by unbounded domains, presence of concentrated vorticity,
and domains with double connectedness. The classical vortex ring is a flow that exhibits all
three of these complications. The author's earlier work on the vortex ring (reported in his
paper in the Proceedings of COMSOL 2017) was only partly successful, owing to its
restriction to an idealized vortex ring, a typical meridional section of which has a core in
the form of a circular disk. This restriction led to the presence of a discontinuity in the
component of velocity tangent to the core boundary—i.e. a slip velocity—that separates
the rotational flow in the core from the irrotational flow outside it. If the flow is steady in
time as seen by an observer moving with the ring—as assumed here—such a slip velocity
is incompatible with continuity of pressure across the core boundary. The present work
addresses this deficiency by allowing for a noncircular cross section of the core boundary.
The family of noncircular cross sections incorporates two constraints a-priori, namely
constancy of cross sectional area of the core and constancy of the centroidal radius, i.e.
the transverse distance from the axis of symmetry to the centroid of the cross section.
The boundary of the core cross section is represented in local polar coordinates in which
the local radius (constant for a circular cross section) is replaced by a Fourier cosine series
with respect to local polar angle (defined to be zero at the outer equator). The simulation
employs Physics Interfaces of General Form PDE type in three distinct domains, an
Interface of Weak Form Boundary PDE type on one boundary, and an Interface of
Optimization type in one Component. In the Optimization the Object Function is the
integral with respect to local arc length around the core boundary of the square of the slip
velocity and the Control Variables are the coefficients of the aforementioned Fourier
series. By incorporating twelve terms in the series the optimization reduces the Object
Function to less than 0.001 times its value in the case when the core boundary has circular
cross section and the maximum slip velocity to less than 3.2% of the mean of the
tangential velocities on the two sides.



Figures used in the abstract

Figure 1Figure 1: Distributions of the tangential velocity, v_t, around the cross section of the core
boundary after optimization to eliminate slip. For reference the figure also includes the
distributions of v_t for a translating impermeable ring with no circulation (C=0), a
stationary impermeable ring with zero propagation velocity (W=0), and the propagating
vortex ring with circulation (W*C≠0). Here v_t_ex and v_t_in denote tangential velocities on
the exterior and interior of the core boundary, respectively.
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