

Numerical modeling that predicts, optimizes and innovates

Modelling lubricated contact

Jean-David Wheeler, Vincent BRUYERE SIMTEC

(+33) (0)9 53 51 45 60

jean-david.wheeler@simtecsolution.fr ; vincent.bruyere@simtecsolution.fr

that predicts, optimizes and innovates

Working with SIMTEC

Industry Challenges

- R&D sections: experts in their field
 → Expertise in numerical modelling?
- Lack of time
- FE modelling performed by a small group of people

SIMTEC's Solutions

- Numerical modelling project
 - \rightarrow SIMTEC's member as your colleague
 - \rightarrow Help improve your modelling knowledge!
 - \rightarrow Cost-effective outsourcing

MISS

Numerical modeling

that predicts, optimizes and innovates

Our team & Our clients

Numerical Modelling Consultants

6 Members all EngD + PhD

- Extensive research background
- **Complex problems**
- various fields of expertise

Successful Track Record:

- Big international compagnies
- Government laboratories

Involved in Research Consortia

- EU funded projects (REEcover / SHARK)
- PhD projects supervision.

Patrick Namy

Jean-Marc Dedulle

Jean-David Wheeler

Elise Chevallier

Maalek Mohamed-Said

Certified Consultant

that predicts, optimizes and innovates

SIMTEC: 15 years of building expertise...

HORIZON 2020

www.simtecsolution.fr 4

that predicts, optimizes and innovates

Summary

- Introduction
- Study Case with COMSOL Multiphysics®
- Application with COMSOL Server ™
- Conclusions

that predicts, optimizes and innovates

Side view of a rolling element bearing

Numerical modeling

that predicts, optimizes and innovates

Introduction

- Typical physical phenomena

- High pressure inside of the contact / at the inlet
 - \rightarrow Piezoviscous lubricant
 - \rightarrow Compressible lubricant
 - \rightarrow Non-Newtonian lubricant \rightarrow lubricant thinning
 - ightarrow Shear and compression heating ightarrow lubricant thinning
 - ightarrow Limiting shear stress

Solids

- \rightarrow Deformations
- \rightarrow Roughness
- \rightarrow Heat accumulation
- \rightarrow Tribofilm

Numerical modeling

that predicts, optimizes and innovates

Study case with COMSOL Multiphysics®

Study case with COMSOL Multiphysics®

Reynolds domain and boundary conditions

u = 0

 $h = h_0 + h_{rigid} + deformations$

that predicts, optimizes and innovates

Film thickness expression

Numerical modeling

Equivalent elastic solid deformation equation and boundary conditions

Habchi W, Eyheramendy D, Vergne P, Morales-Espejel GE. A full-system approach to the elastohydrodynamic line/point contact problem. J Tribol. 2008;130(2):21501–10

that predicts, optimizes and innovates

Study case with COMSOL Multiphysics®

$$Q_s = h \cdot \eta \cdot \dot{\gamma}^2$$

$$\mathbf{\nabla} \cdot k \mathbf{\nabla} \mathbf{T} = 0$$

$$T = T_0$$

*Heat transfer equation and boundary conditions on an equivalent solid**

Numerical modeling

that predicts, optimizes and innovates

Study case with COMSOL Multiphysics[®]

Isothermal rigid contact with an isoviscous and incompressible Newtonian lubricant - comparison between analytical¹ (··O··) and numerical (—•—) results

Solid model	
Deformations	None
Surface roughness	None

Lubricant density dependence	
Temperature	No
Pressure	No

Lubricant viscosity dependence	
Temperature	No
Pressure	No
Shear stress	No

Parameter	Value [Unit]
Slider velocity u_b	10 [m/s]
Load w	$8 \cdot 10^5 [N/m]$
Slider length	60 [<i>mm</i>]

Numerical modeling

that predicts, optimizes and innovates

Study case with COMSOL Multiphysics[®]

Influence of the lubricant temperature on the contact behaviour - comparison between isothermal ($\cdots \circ \cdots$) and thermal ($-\bullet -$) results

Solid model	
Deformations	None
Surface roughness	None

Lubricant density dependence	
Temperature	Yes
Pressure	No

Lubricant viscosity dependence	
Temperature	Yes
Pressure	No
Shear stress	No

Parameter	Value [Unit]
Slider velocity u_b	10 [m/s]
Load w	$8 \cdot 10^5 [N/m]$
Slider length	60 [<i>mm</i>]

Numerical modeling

that predicts, optimizes and innovates

Study case with COMSOL Multiphysics®

Solid model	
Deformations	Yes
Surface roughness	None

Lubricant density dependence	
Temperature	Yes
Pressure	Yes

Lubricant viscosity dependence	
Temperature	Yes
Pressure	Yes
Shear stress	Yes

Parameter	Value [Unit]
Load w	$8 \cdot 10^5 [N/m]$
Slider length	60 [<i>mm</i>]

Numerical modeling

that predicts, optimizes and innovates

Study case with COMSOL Multiphysics®

Solid model		
Deformations	Yes	
Surface roughness	None	

Lubricant density dependence	
Temperature	Yes
Pressure	Yes

Lubricant viscosity dependence	
Temperature	Yes
Pressure	Yes
Shear stress	Yes

Parameter	Value [Unit]
Load w	$8 \cdot 10^5 [N/m]$
Slider length	60 [<i>mm</i>]

that predicts, optimizes and innovates

Application with COMSOL Server™

that predicts, optimizes and innovates

Application with COMSOL Server™

that predicts, optimizes and innovates

Application with COMSOL Server™

SIMTEC provides:

- New generation workstations
- Hardware maintenance
- Software maintenance
- Scientific validation at the updates
- COMSOL Server[™] licence management
- Hotline
- Confidentiality

You:

• focus only on your topic!

that predicts, optimizes and innovates

Application with COMSOL Server™

Ask for a free secured access to the slider bearing app

to test the SIMTEC modelling skills!

jean-david.wheeler@simtecsolution.fr vincent.bruyere@simtecsolution.fr

that predicts, optimizes and innovates

Conclusions

- Modelling lubrication is not an easy task!
- However, the tribology research field provides quantitative understanding on some topics
- SIMTEC develops physical models for quantitative predictions
- SIMTEC provides apps to make these models more accessible