

The relevant scale for mechanical modelling in additive manufacturing technologies

Sofiane Guessasma¹ & Sofiane Belhabib²

¹INRA, research unit BIA, Nantes, France sofiane.guessasma@inra.fr

²IUMR CNRS GEPEA, University of Nantes, France sofiane.belhabib@univ-nantes.fr October 22–24 SWISSTECH CONVENTION CENTER

COMSOL CONFERENCE 2018 LAUSANNE Basics of FE simulation in structural mechanics

Complex load/geometry + simple mechanical law

Complex mechanical response + simple load configuration

Complexity in both mechanical law + configuration

Source of complexity: material discontinuities Stereolithography

Fused filament (FDM)

Droplet-based

ABS00

0.00 %

0.00 % P1S2R1

Comsol model:

Handelling raster effect filament crossing sequence +45°/-45°

Crossed filaments

y." Weak interphase Stiff cell Domain **Filament cross section**

Explaining effect of raster on performance

CAD-based modelling: Compression performance of cellular structures

Strain field

Comparison between FE and experimental Young's moduli

Conclusions

Relevant scale for FE modelling in additive manufacturing : microstructural heterogeneity

Micro-sized porosity

Conclusions

□ Filament-based FE simulation: lack of cohesion between filament + process-induced porosity

Conclusions

□ Complex deformation mechanisms guided by process conditions (printing angle)

disp param(1)=1E-5 Surface: von Mises stress (MPa)

disp param(1)=1E-5 Surface: von Mises stress (MPa)

