

Design and Simulation of Cyclotron Magnet using COMSOL Environment[®]

Faisal Alrumayan, Amr Hendy, Hamoud Kassim King Faisal Specialist Hospital

Riyadh, SA

rumayan@kfshrc.edu.sa

Outline

-Introduction

-Purpose of this work

-Multiphysics Model

-Results and Discussion

-Conclusion

Cyclotrons at KFSHRC

Beam Energy, Fixed*	External Beam Current	Internal Beam Current
Protons - 26 MeV	60 µA	200 µA
Deuterons - 15 MeV	100 µA	300 µA
Helium-3++- 38 MeV	60 µA [.]	- 135 μA
Helium-4++- 30 MeV	40 µA	90 µA

*With a tolerance of ± .5 MeV

C-30 IBA

The CS-30

- 1- Harmonic coils
- 2- magnetic sectors
- 3- Cyclotron chamber
- 4- Magnet yoke

Empirical tests

 Hall probe is mounted on a high precision X – Y stage, 3 which is driven by three stepping motors, two motors for X – axis and one motor for Y – axis.

"Sledworks"

Our computer connected to TMCM – 3110 will control 3- stepper motors in X – Y direction through Lab View program. Figure (3).

Magnetic mapping output

Maximum Field was 2.3 T Minimum Field was 1.4 T

CS30 model

copper	Cyclotron coil	
steel	Magnet sector	Upper

3D mode	l drawr	n by Solia	dworks

>>					
	Property	Name	Value	Unit	Property group
	Relative permeability	mur	1	1	Basic
	Relative permittivity	epsilonr	1	1	Basic
	Dynamic viscosity	mu	eta(T[1/K])	Pa∙s	Basic
	Ratio of specific heats	gamma	1.4	1	Basic
	Electrical conductivity	sigma	0[S/m]	S/m	Basic
	Heat capacity at constant pressure	Ср	Cp(T[1/K])	J/(kg·K)	Basic
	Density	rho	rho(pA[1/	kg/m³	Basic
	Thermal conductivity	k	k(T[1/K])[W/(m⋅K)	Basic
	Speed of sound	с	cs(T[1/K])[m/s	Basic
	Refractive index, real part	n	1	1	Refractive index
	Refractive index, imaginary part	ki	0	1	Refractive index

Physics Interface

- Magnetic field (mf)
- Stationary study
- Coil Windings n=265
- Electrical current= 320A
- Material is steel= (1010)
- Mesh size = Normal

:/DC

Difference

Results show that the difference between actual and simulated values was less than 10%.

Physics Interface Particle tracing module

- Time dependent for particle tracing model
- One particle accelerated

Physics Interface Particle tracing module

 Cyclotron frequency supplies the particle with needed energy to gain energy from orbit To next.

Amplitude is 25 kV

Physics Interface Particle tracing module

During accelerations, ions should be synchronized within a given phase of cyclotron frequency. This is achieved by slightly increasing the average field B (r) with radius (r)

conclusions

 Results show that the difference between actual and simulated values was less than 10%.

 Simulated particles encountered orbital overlapping before reach to the final extraction level

Thank you